CIRCULATION CGFr UCID- 20378

SUBJECT TO RECALL
N TWD WEEKS

AMBER KERNEL SPECIFICATION

S-1 Project

March 20, 1985

DISCLAIMER

This document was prepared as an account of work spomsored by an agency of the United States Government.
Neither the United States Goverament nor the University of Califernia ner any of their employees, makes any
warranty, express or implied, or assames any legal liabillty or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, preduct, or process disclosed, or represemts that its use would not infringe
privately owned rights. Reference herein to any specific commercial preducts, precess, or service by trade name,
trademark, manafactwrer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Goverament or the University of Californis. The views and opinieas of asthors
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Prinled Copy $; Microfiche $4.50
Domestic Domestic
Page Range Price Page Range Price

001-025 $ 7.00 326-350 $ 26.50
026-050 8.50 351-375 28.00
051-075 10.00 376-400 29.50
076-100 11.50 401-426 31.00
101-125 - 13.00 427-450 32.50
126-150 14.50 451-475 34.00
151-175 16.00 476-500 35.50
176-200 17.50 501-525 37.00
201-225 19.00 526-550 38.50
226-250 20.50 551-575 40.00
251-275 22.00 576-600 41.50
276-300 23.50 601-up'

301-325 25.00

'Add 1.50 for each additional 25 page increment, or portion
thereof from 601 pages up.

Work perfermed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract W-7405-Eag—48.

S-1 Project

AMBER KERNEL SPECIFICATION

Lawrence Livermore National Laboratory
26 February 1985

PURPOSE

This document provides a detailed definition of the kernel functions provided by the Amber system. The
description of each interface includes a discussion of its function, definition of its input and cutput parameters,
and a list of error or warning conditions which result. No attempt is made to provide a tutorial on the possible
applications of these interfaces.

Caveat: this is a preliminary document, and the definition of the interfaces is subject to change. It is anticipated
that changes will occur more in the form than the function of the interfaces. That is, this document should
accurately represent the operations which will ultimately be provided by the Amber kernel, but it is the format

and parameterization of the kernel calls that are likely to be modified as the result of ongoing review and
experimentation.

In addition, the document does not present a complete set of maintainence functions, such as metering and
debugging tools. Appropriate routines will be defined as they are needed.

Amber Kernel Specification 2

THE KERNEL AND ITS ROLE IN THE SYSTEM

By design, the Amber system is highly modular with many layers of functionality. Aside from the software
engineering advantages, this approach is used to allow particular applications to select the exact set of functions
required for their operation, without incurring the overhead of extraneous functions. System support can be
tailored for specific applications by configuring the modules or layers which implement the needed operations.
Other modules may be simply omitted without additional cost.

The kernel interfaces constitute a layer of functionality. They provide the operations necessary to construct
systems for Navy evaluation of the S-1 family of processors. Specifically, support is available for efficient, reliable
real-time applications and a sophisticated program development system

The kernel is esscuc:aily a high level virtual machine whose operations are more powerful and convenient than
those of the raw hardware, and dircetly reflect the functions in the problem space of intended applications. The
kinds of facilities available from the kernel include multitasking on single and multiple processor configurations,
control of stotage mapping with sharing among different tasks, interprocess communication and synchronization,
clock services, a hierarchical file system, input/output for standard devices and support for user-written device
drivers, and access control on all objects (files, tasks, devices, etc.).

A concerted attempt has been made to trim the kernel interfaces to the minimum necessary to support the broad
range of possible applications. Consequently, the interfaces tend not to be specially suited for any one application,
but useful for constructing higher level packages which implement a specialized function. For instance, the kernel
provides a single “timer” from which a package supporting multiple timers could be built. A wide variety of
such library packages will be provided as part of the Amber Base System. These will reside in the user's address
space and execute with the user’s level of privilege. Such library routines will be documented elsewhere.

Indecd, the distinction between what is a kernel routine and what is a user-level library routine is of little
importance to the user. All can be called directly from high-level language routines, and are documented in the
same fashion. The kernel routines merely provide a base from which it is practical to build the more sophisticated
user routines. In certain cases, it will be found that a user interface routine provides a specific policy not imposed
by the underlying kernel mechanism, or may not utilize all the flexibility available from the kernel. This is done to
provide what is considered a simpler or better adapted operation for the applications. When the user interfaces
do not provide what is needed, the function can be synthesized directly from the kernel interfaces.

3 Amber Kernel Specification

OVERVIEW

A program running on the Amber virtual machine sees a world composed of several classes of objects: domains,
tasks, segments and message channels. A program manipulates these objects through the kernel interfaces. For
example, a task can be started and stopped, or a segment can be created and cataloged in a domain.

The Storage System

A domain object has two functions. First, it serves as a conventional directory by cataloging other objects
including other domains. Second, it serves as a name space by defining the list of objects which can be referenced
by a task.

A domain contains “entries” of two kinds. There are the objects that are directly cataloged within the domain,
and there are “links” that are synonyms for object entries in the same or other domains. Each entry in a domain
has a numeric identifier which is unique across the entire system. This “id” is the name used in most kernel
operations. For example, a task identifies an object in a kernel operation by using the id of an entry for the
object within the domain in which it is executing. In addition, an entry may have zero or more mnemonic names
(of up to 48 characters). These names must be unique only within the domain in which they are defined. A
simple lookup operation exists to translate a textual name to an id with which the object can be manipulated.
Entries for segment objects may also be referenced by address. By giving a segment entry an address, the user
maps it into the address space of the domain. (This is described in detail below.)

The graph of domains, sub-domains and the objects catalogued within them form a strict hierarchical tree. This
is called the storage system or domain hierarchy. Any object can be found by giving the ids or names of all
entries along the path from the “root™ domain to the object’s own entry. This route is termed the “pathname”

of the object. Of course, an object may also be found by giving the pathname of a link entry that gives the
object's actual pathname.

An object can be moved from one domain to another. When this happens, its pathname changes and any links
which pointed to the object become invalid. When a domain object is moved, the entire subtree which it heads
is, in effect, grafted into another location in the hierarchy. There are no logical restrictions on the movement
of objects. However, some restrictions are made on the basis of physical allocation of storage on the long-term

storage media (e.g. disks). This is described below. Also, the maximum depth of the hierarchy is limited for
implementation reasons.

Status information is kept in the parent domain of each object defined on the system. The kernel itself maintains
certain built in attributes such as time of last use, modification or backup, creator, number of times referenced,
etc. These are automatically updated as a side effect of kernel operations. User defined attributes are kept on a
“property list” similar in function to the Lisp construct of the same name. This is a list of (property name, string
value) pairs, which can be updated directly by user programs. The properties are intended to hold information
about the use or contents of an object relevant to specific applications.

Access Control

All objects have an “access control list (ACL)" that specifies who can have access the to the object. The ACL
is a list of pairs (mode set, principal) where the mode set controls the operations which can be performed, and
the “principal” stands for the process, user, group, etc. that is to be allowed to perform the operations.

A principal is represented in Amber as a domain object. For instance, to give a task access to some object, one
adds to the access control an entry that specifies task’s domain of execution as the principal. A (human) user is
also represented by a domain specially created to represent his access rights. In order that a task being managed
by a user may have the ability to use the access of the user, every domain has an “owner” domain, and the rule is
made that a task can utilitize access control list entries naming its domair of execution or that domain’s owner.

Groups are constructed by a general “power-of-attorney” mechanism. A domain may be granted the right to
“use” the access of another. One can then construct a domain which represents a class of users, and control who

is a member of that class by altering the access control list. Access granted to the class is then available to its
agents.

Amber Kerne! Specification 4

The kernel does not automatically derive class memberships. To perform some operation on an object, the user
must provide an “access-path” for some entry in the ACL. The simplest access-path is a single principal, X,
which is either (1) the domair in which the current task is executing, or (2) the owner of this domain. If the
principal X does not directly have an entry on the ACL of the object, it may be able to use the power-of-attorney
mechanism to get access. For example, if Y appears on the ACL of the object and X has “use” access on the
ACL of Y, presentation of the access-path X.Y permits X to obtain Y's access. In general, an access-path is an
ordered list of principals X.Y...Z such that the first entry (X) is the current domain or its owner (to which use
access is implicit) and in each pair A.B it is the case A has use access to B through its ACL. The access which
an access path allows to the object is computed by searching the ACL for an entry naming the last component
of the path (Z).

A link to an object contains, in addtion to the pathname of the object, an access-path to be used to compute
the access on the object. Thus, when a task specifies a link id in a kernel operation, the modes of access are
computed from the last compoenent of the access-path. However, no access is allowed unless each component is
an agent of the next.

It is important to recalize that access is evaluated on each use of a link. Consequently, the modes of access
available with a link may vary in time as changes are made to the access control list of the target object. 1t is
possible, for example, to create a link to an object before access is granted to the access-path named in the link.

Changes to the access control list of the principal domains listed in the access-path can alter the right to use the
access-path as well.

A link also contains a mode field which is voluntary limit on ihe modes of access to be used; for example, if a
scgment is only to be read by a task which has read-write access to it, using a link with a read-only mode set
prevents inadvertant writes.

When an object {as opposed to a link) is cataloged directly in a task’s domain of execution, the id of the object’s
entry may also be used in a kernel call. In this case, object entry is treated as a link with an access-path consisting
of the containing domain. This means that to determine the access rights, the access control list is searched for
an entry for the containing domain.

A common case is granting all users on the system access to an object. While this could be accomplished with
a kind of super-group, a simplification is permitted. A access control list entry may be created with a special
tag denoting the group of all principals; if there is no match for the last component of an access-path, then the
universal entry may be used.

Data Storage and Memory Management

Segments are objects that can be used to store data. They are roughly analogous to files on other systems;
however, I/O operations are not required to manipulate them. Instead, they may be mapped directly into the
virtual memory associated with a domain, and referenced as data by normal instructions. When several programs

address the same object, they share identically the same data; changes made by one program are immediately
visible to others.

The data in a segment is simply a string of bits. The kernel does not enforce any particular structure on segments;
consequently, they may contain any kind of infermation, in any format that the user requires. (Certain non-
kerne] functions do utilize scgments with special formats, for example, to represent text files and executable code

s

When a segment is mapped into the virtual memory of a domain, it becomes accessible as the contents of the
memory locations over the range of addresses that it occupies. The memory slot occupied by a segment is
characterized by two attributes, the base address, and the size. The base address is simply the address of the
first bit. The size is the length of the slot. The user must designate the size to be used when mapping the
segment. The base address can be cither designated by the user or assigned by the kernel. The mapping is not
fixed. The segment can be remapped from one location to another and its size changed.

A mapping may be established for each separate segment entry in a domain, and the modes of access allowed to
the memory are precisely those that available through the entry. Consequently, if a domain contains more than

one entry for a segment, then the segment may appear in its address space in more than one location and with
different modes of access.

5 Amber Kernel Specification

It is important to remember that a segment can be placed in different locations in a single domain or different
domains; thus the contents of a segment should not contain absolute addresses. For this reason, the translators
provided to run in applications environments supported by Amber will produce position-independent code.

The architecture forces virtual memory to be allocated in power-of-two multiples of 64K quarter-words. Con-
sequently, the segment slot size is rounded up to the next suitable boundary. The base address must also be
aligned on a boundary equal to the rounded size. However, memory use can be controlled in units of pages of
1024 single-words, and regardless of the rounded slot size, the size is enforced with page size granularity.

A segment has a maximum length that defines the largest offset within the segment which can be accessed. This
is expressed in terms of quarter-words and enforced to within the limits of the architecture. The maximum length
can be increased at will, and decreased to the current length of the segment (the end of the allocated record
with the largest offset). There need be no relationship between the maximum or current lengths of a segment
and the size allocated to it when it is mapped. If the size is less than the current length, then only a portion of
the segment can be addressed. A size greater than the current or maximum lengths allows the segment to be
grown.

Physical storage for segmerts is allocated in units of records (1 page long). When a segment is created, no
records of storage are allocated for it until its contents are written. Then a record is allocated for each separate
page written. Records which have never been written may be read and appear to be full of zeros. Reading of a
zero page does not cause a record to be allocated. Once allocated, a record is not deallocated until the segment
is deleted or the segment is explicitly truncated by use of a special operation. Incidental zeroing of a page as a
result of normal machine instrnctions does not cause the corresponding record to be deallocated.

A demand paging mechanism is used to multiplex available system main memory among the pages of addressible
segments (those mapped into a domain containing an active task). When a page of a segment is referenced and
the page is not already in memory, it is read in from the secondary storage device on which it resides and brought
into main memory. The hardware mapping functions place it in the proper location of all referencing domains.
Pages which have not been referenced recently are evicted from main memory to make room for incoming pages.

Demand paging algorithms have been shown to be very effective, particularly when the main memory available
for paging is large. However, there are certain cases where demand paging has unfortunate side effects. Special
escapes are provided to handle these cases. Otherwise, the paging mechanism is completely invisible to the user.

In real-time applications, the possible delays induced by demand paging can prevent a program from meeting
response time requirements. These delays are avoided if the storage of a real-time program is kept resident
(“wired”} in main memory. An operation is provided to allow a privileged program to wire critical segments.

Programs that have long patterns of sequential access. such as large scale vector computations, can result
in worse-case performance of page eviction algorithms. (Practical algorithms are approximations of an LRU
replacement strategy.) To avoid this, operations are provided which allow the program to to indicate to the
system its intended pattern of use. Specifically, a program can declare that it is about to reference a section of
memory (in a sequential manner). and that it is “done” with a section of memory for the near term.

Certain algorithms, for example in transaction processing, require memory fields to be updated in a particular
order so that at each step, the data remains consistent even in the face of a system crash. In our context, this
means that the user must be able to control the order in which the secondary storage image of segments is
updated. However, the kernel updates records of secondary storage from their in core image in any order it sees
fit. A mechanism is therefore provided to allow a program to insure that the main and secondary storage copies
of a section of memory are consistent, before proceeding with additicnal updates.

Secondary Storage Resource Control

Segments are not the only objects that use secondary storage. For example, the storage for domains is handled
in precisely the same fashion. (They are in fact segments insofar as the kernel routines are concerned.) Other

objects, such as tasks have their “contents” stored in their parent domains. As a result, no storage is allocated
specifically for them.

Secondary storage is grouped into “volumes” that may consist of parts of one or more disk-like physical storage
devices. When a storage object such as a segment is created, the volume on which its storage is to be placed is

Amber Kernel Specification 6

specified. Thereafter, it can be moved from one volume to another if desired. A system of defaults is provided
so that the average user need not be explicitly concerned with physical allocation. Each domain has defaults for
the volumes on which cataloged objects will be placed.

The kernel distinguishes two types of volumes: first-class and second-class volumes. First-class volumes may
hold domains that contain objects residing on other volumes. Second-class volumes may hold domains that point
to objects residing only on the same volume. Thus, second-class volumes must contain complete subtrees of the
domain hierarchy. (Note that this organization places restriction on the movement of objects from one volume to
another, or from one domain to another.) The class distinction exists to allow sections of the hierarchy that can
be removed from the system configuration. This may be useful to allow for a graceful degradation of resources
in the event of hardware failure, or to acheive better utilization of devices.

There is no operation for defining the class of the volume. It is assumed that this is administrative function
performed at the time the storage medium is formatted.

A quota mechanism is provided to control usage of secondary storage. It imposes a limit on the total number of
records of a volume that may be used. Quota is applied on a per domain basis, and the limit associated with a
domain applies to all segments and subdomains below that domain in the hierarchy. Since a domain may contain
objects on different volumes, separate quota controls are provided for each volume.

In order for objects to be created on a volume, a “quota account™ must be created to keep track of the storage
usage on that volume for objects within the domain. The account encompasses objects in all subdomains that
do not themselves have a separate account. Thus, a domain with a quota account forms the root of a “quota
subtree™; all objects are charged to the root of the subtree in which they appear. A domain which has a quota
account is charged against an account in one of its superiors. Each account has an absolute limit on the pumber
of records which can be used by all objects charged to the account. There need be no relation between the total
amount of quota allocated on a volume and the actual number of physical storage records. The creation of a
quota account is a privileged system function.

The storage usage on a volume can be further controlled by use of the optional “quota limit”; without an explicit
limit, the entire quota allowed by the quota account can be used. The quota limit applies to all subdomains
(within a quota subtree}, even those which themselves bave an explicit quota limit. The usage for each domain
is the sum of the usage within that domain and the usages of all subdomains, and the limit at each domain must
be satisfied. Setting of a quota limit is a nonprivileged operation, and is intended to be allow a user or group to
allocate the resources which they are authorized to use by the presence of the quota acconnt.

The following rules define the boundary conditions, and apply in the case of both the quota account limit and
the simple quota limit. In calculating the quota usage, new zero records (records which have never been written
into) are not counted, and a program can read from a zero record without affecting the quota usage.

The limit on the use of segment records is absolute. Once the limit has been reached, no additional records can
be created. In order to insure correctness of the kernel, domain records must be able to be created arbitrarily.
Therefore, domain records are charged against the quota, but are not limited by it. The effect is to reduce the
number of records available for segments, However, once the quota has been exceeded, no new objects may be
created within the domain, even if they do not take up permanent storage records.

A quota less than the current usage can be set. In such a case, no additional records may be allocated to
srrments under the domain. If it is desired to use additional records, it is then necessary to destroy other records
Ly deletion of segments or domains, or by truncation of segments.

Task Organization

A task object represents a kind of resource that can execute programs. A primary function of the Amber kernel
1s to multiplex one or more physical processors among the tasks active on the system. The scheduling mechanism
used is a simple priority system. A task may be placed in one of several priority queues, representing the relative
acceptable delay in reponse to events. The scheduler chooses for execution the first runnable task in the queue
with the highest priority. When there are several runnable tasks in a priority queue, they are scheduled in a first
come first served order. A task is allowed to run for the duration of its runtime quantum; it is then moved to

the end of the queue, and its quantum is reset. (A task can, of course, be preempted if a higher priority task
becomes runnable.)

7 Amber Keruel Specification

There are different sets of queues for each physical processer on the system, and at any one time, a task is
assigned to run on only one processor. Explicit action is required to move a task to some other processor. This
approach is used for several reasons. First, in a multiprocessor S-1 configuration, external I/O devices are usually
accessible from only one of the processors. A task communicating with the device must be restricted to run on
that processor. Second, to achieve maximum use of the local caches in the processors, it is important to run a
task on the same processor as it was last run. Third, it can serve to achieve concurrency among cooperating
tasks. Each of several tasks working on a large problem can be assigned to different processors.

The consequence of this approach is that over the long term the workload assigned to the different processors
can become unbalanced. A privileged system task will exist which monitors processor usage by tasks, and
redistributes the tasks to different processors. Such action will occur relatively rarely; load balancing thus
becomes a “long-term” activity. This system task is not part of the kernel. A single or multiprocessor system
could function quite adequately without it. For example, a static assignment of tasks to processors might be
sufficient for a well defined real-time application. Being a user-level program, the balancing task can be easily
modified or replaced (even dynamically) to tune the system or implement different scheduling policies. For
instance, in certain cases load balancing may not be desirable. In an application such as weather forecasting, it
may be useful to allocate a small number of processors to interractive control and enquiry tasks, and reserve a
larger number of processors to run the large-scale computational tasks.

A task may be in one of several states. An “inactive” task is one which is not allowed to run. When in this
state, the machine state of the task is available from the storage system. Once activated, the stored state is
considered to be “inconsistent”, and should the system crash before the task is deactivated, the state is left
inconsistent. A “stopped” task is one whose execution has been momentarily halted. The task machine state
remains inconsistent in this state. A “waiting” task is one which has halted its own execution until some event
or timeout occurs. A “runable” task is one which is ready to run. The task will be allowed to execute on a
processor when it becomes the highest priority, runnable task on that processor.

The execution of a task can be controlled by other tasks holding capabilities for it with suitable modes of access.
When a task is created, its creator is given full access rights to the task. The task can be activated, started,
stopped or deactivated, and its state examined or modified. The state information of a task includes the contents
of its registers and program counter. By altering its state, a task ~an be forced to change the location at which
it is executing or to perform a procedure invocation.

A task executes in its parent domain. The entries in the parent domain therefore define the objects which the
task can reference. In particular, the task can access as code or data any segments which have been mapped into
the virtual memory of the domain. Unlike some other systems, a task in Amber is not the unique posessor of its
domain; several tasks may share a domain, thereby retaining close coupling and high bandwidth communication
through shared data.

It is the responsibility of the creator of a task to initialize the parent domain so that there exits entries for all
segments initially needed by the task (e.g. program, stack, static) appear in the domain, and that the addresses
of these segments have heen defined. For example, the program segment will be mapped into the domain, and the
program counter in the task state set to the start address of the program. Once the task has started execution,
it is free to add or delete segments from the domain memory map as it sees fit.

In order that the task have access to modify its domain of execution, it is necessary that a link exist in the
domain by which the task can reference the domain. The id of this link is part of the state of the task, and when

the “current domain” is used in a kernel operation, this id is used to access the link. The creator of the task is
responsible for creating this link.

By these mechanisms, domains can represent the prelinked environment of a task or group of tasks. Often
the environment will include certain data segments which themselves must be preinitialized, but which will be
modified during execution of the task. The stack and static data segments are examples. When this is the case,
it is necessary to create a new domain for each instantiation of the task, and place into the domain private copies
of the template objects. As this is expected to be a common operation, a kernel primitive is provided. The user
defines a template domain which contains entries for the objects which are required by the task. The template
objects are characterized by placing a non-blank “template” property on their property lists. When the kernel is
requested to invoke the domain, a pew domain is created. Non-template objects are entered into the new domain
by creating links to the originals. Copies are made of the template objects and entered into the new domain.

Amber Kernel Specification 8

It is expected that the normal mode of operation would be for the copy of a domain to be made an inferior of
the domain of the task which invoked it. Such an approach creates a task hierarchy that allows a simple garbage
collection of tasks. When the domain of a parent task is deleted, all inferiors are deleted as a consequence of the
recursive deletion of domains.

When a domain is “invoked” in this manner, the invoking domain is permitted no more access to the copy of
the domain than it had to the template. This allows a domain to invoke a protected domain.

Synchronization

Synchronization between different tasks is accomplished by broadcast mechanism. A task deflnes a “broadcast
event” which signifies some higher level state such as a lock becoming unlocked, a queue becoming empty or
alarm clock going off. Whenever a task “broadcasts” the occurence of the event, all tasks which have defined
the event are sent a wakeup.

An event is named by a 2-tuple, object and event-id. That is, for each object in the storage system, there may
be an arbitrary number of events differentiated by different ids. The object may be specified by any capabilty
for the object. The id is assigned completely at the discretion of the user program. Consequently, for two tasks
to communicate, there need be no pre-registration of the event. The two tasks need only agree on the event-id
to be used (or the algorithm for computing it) in advance. For example, a lock event might be defined by the
segment containing the lock as the object, and the offset of the lock within the segment as the id.

Special access modes are defined for each object to control the ability to listen for or to broadcast an event. Such
control is provided for two reasons: first, to prevent malicious wakeups from being delivered to a task; second,
to protect what is, in practice, a channel of communication bewteen two tasks.

Each installation may place a limit on the number of events that may be declared by any single task or by all
tasks as a whole,

Note that the system does not explicitly provide queues, semaphores, event counts, locks or other such mech-
anisms. These can be synthesized using data shared between two communicating tasks (or other mutually
observable information) and the event notification mechanism to control the rendevous between the tasks.

Interprocess Communleation

Message channel objects provide a mechanism for communication between tasks. Each channel is bidirectional,
and has two “nodes” representing symmetric user and server functions. When a message channel is created,

two separate objects are created one for each node. A message sent from one object is directed to the task
listening on the other.

Since access to user and server functions can be passed between domains, several tasks may concurrently have
the right to transmit on a channel. However, to avoid conflicits, only one task at a time is allowed to take control
of a node. An attempt to take control of a channel that is already in use gives an error indication, though forcible
acquisition i3 allowed. Typically, if a task expects to communicate with more than one other task; one channel

is created by which user tasks can request a private channel. Access to the request channel can be resolved by
~ontention algorithms,

Information is transmitted in message packets. A packet is a variable length record, and corresponds to the
information transmitted with a single send operation. All packets are delivered to the receiver in the time order
in which they were originally sent. The packet mechanism serves three purposes: to buffer the information, to
structure the information, and to synchronize transmission.

Data transmission requires a rendevous between sender and receiver at opposing nodes on a channel. When a
message is to be sent, the sender gives the kernel the address and length of the packet. When the receiver asks
to read a packet, it is transferred directly from the sender’s address space to the receiver’s without intermediate
buffering. The tasks need not wait at the send or receive operations for the transfer to occur; instead, their
execution proceeds asynchronously. Once the transfer actually takes place, the tasks are sent a wakeup indicating
that the transaction is complete. A task is allowed to have a single, incomplete send outstanding on each channel.
A receiver may have two outstanding reads on each channel, thus providing double buffering.

9 Amber Kernel Specification

As a structuring tool, each packet maintains a separate identity, which is visible to the user program. Depending
on the application, the program may choose to use or ignore the packet structure of a message. For instance, in a
character stream transmission, the packet structure might be incidental. Alternatively, when a message channel
is used to transmit requests to a server process, each packet could represent a separate request.

Packet delivery is signalled to the communricating tasks with the wakeup mechanism, thereby providing synchro-
nization and flow control functions. The sender is notifled that the packet has been transmitted; the receiver,
that the packet has been read. In addition, the receiver can request a wakeup when a packet is available from
the sender before issuing a request to read the packet.

Wakeups

The event broadcast mechanism, the message channel mechanism and the timer mechanism use “wakeups” to
signal the occurence of an event to the user program. In addition, a task which has access to another task may
send the other task a wakeup directly. Privileged tasks may receive wakeups when an I/O interrupt occurs.

Each task has a small, fixed set of wakeups monitored by the kernel. When a wakeup is sent to the task, it
is interrupted. If the task is “blocked” waiting for a wakeup, it is made runnable so that it can process the
interrupt; if the task has a higher priority than that which is currently running on the processor, then the task
immediately begins to run. If the task is running at the time that the wakeup is received, then its flow of control
is altered immediately.

The method used to interrupt a task has not yet been precisely defined. It is intended that software interrupts
as defined here follow the general protocol for hardware interrupts. traps. etc. as defined by the S-1 architecture.

A task may mask against all wakeups as a group. Consequently, while a task is masked, or stopped, it may
receive any number of wakeups. This are recorded by the kernel in a “pending wakeup mask™. When the user
task is interrupted, the entire mask is delivered as an interrupt parameter, and the mask is cleared. If two

identical wakeups are received before the task can be interrupted, then knowlege that the second wakeup was
received is lost.

Each installation may define the size of the wakeup set used by tasks on the system. A normal value would be
576 wakeups per task.

It is anticipated that a library package will be created that provides user programs with a higher level protocols
such as waiting for a particular subset of wakeups or interrupt priorities. Note that when an application requires
true priority interrupts, it should be implemented as multiple tasks with different scheduler priorities.

Extended Type/Protected Objects

Access to an object can he controlled by a type manager which implements operations or protection policies
not directly supported by the system. When it is created, an object may be tagged as being “sealed” by some
domain. The result is that normal kernel operations (such as read and write for a segment) can no longer be
used to manipulate the object; instead, the type manager (i.e. the sealing domain) must be requested to perform
the operation on behalf of the calling program. The type manager (or its agents) may unseal objects sealed by
it and thereby use the normal kernel operations to service the request.

The extended type object aud its representation are physically distinct objects with separate property lists.

Unsealing an extended type object generates a link to the representation; this is the only way in which to
reference it.

The modes of access on an extended type object are not interpreted by the kernel (except as noted below).

Instead, the modes are left to the interpretation of the extended type manager, which can assign to them
entirely new functions.

Certain kernel operations for maintaining the catalog of objects can be directly performed by the user without
the intervention of the type manager. In general, extended type objects can be created and deleted, and their

property lists examined and modified. The access modes controlling these functions are defined for all objects,
including any extended type objects.

Amber Kernel Specification 10

Input /Output

I/0 services are provided by Amber through three mechanisms: segmentation, direct access to external devices,
and interprocess communication.

The functions provided by fille systems of other operatng systems are subsumed by the segmentation model
described above. A file i3 accessed by mapping a segment into the memory of a domain. The segment can
be then be accessed as if it were a simple array of bits; random or sequential access is possible using rormal
indexed addressing. More sophisticated functions, such as keyed files or data base systems, can be provided with
user-level packages built using segments.

The input/output mechanism defined by the S-1 architecture utililizes small buffer memories shared with external
1/0 processors. Access to these buffers is allowed through jo-segments, which are special kinds of segments created
with a privileged operation. Like ordinary segments, they can be made directly addressible as part of the memory
of a domain. (Although, the architecture requires that they be accessed with special instructions.) In this way,

access to physical I/O devices can be controlled by granting access to the io-segment for the I/O processor that
handles the device.

Occasionally, an IfO processor will control a number of different devices that are to be accessed by separate
tasks. For example, the I/O processor may control a terminal multiplexer, or a disk or magtape controller.
In such a case, a server task can be constructed that demultiplexes the I/O and communicates with the user
tasks by means of message channels. Because the kernel does not internally buffer messages, I/O done in this
fashion can be made very efficient. These control programs are not provided as an integral part of the kernel.
Indeed, except for control of devices which contain storage system volumes, all such support is to be performed
by user-level utilities.

It is useful to note, however, that standard protocols will be developed outside the kernel for servers supporting

general classes of devices (terminals, graphics displays, disks and magtapes). Device simulation such as replacing
a file with a terminal could be performed simply by replacing the server task.

Dynamle Reconfiguration

The kernel allows physical processors and memory to be added or removed from the system configuration at
runtime. It is not necessary to “crash” the system to change the attachment of physical resources.

11

Amber Kernel Specification

CURRENT STATUS

Several facilities deseribed in this document have not yet been incorporated into the existing Amber kernel which

currently runs on the S-1 Mark Ila Uniprocessor. Each kernel gate which does not yet exist is so labeled in the
description of that gate later in this document.

The following facilities are not in the current Amber kernel:

1.

6.

7.

message channels. This includes the create_message _channel , connect _, disconnect_, identify caller _,
send _, receive _, receive_packet_info , flush channel , and monitor task_gates.

. Extended objects. This iucludes the seal;object and unseal object _ gates.

. Quota. This includes the set_default volume , set_default volume domains_, create_quota_account_,

delete _quota_account _, set_quota_limit_, and list_quota gates

. Dynamic reconfiguration. This includes the add _processor , delete _processor_, add_memory_, and

delete_memory _ gates.

. Special segments. This includes the create_special_segment _ gate.

The invoke domain gate.

The move object gate.

The lack of special segments and message chanuels has necessitated the implementation of a temporary terminal
input /output facility. The gates that are part of this temporary mechanism are so marked in the documentation.

Amber Kernel Specification 12

SUMMARY OF OBJECT CLASSES AND ACCESS MODES

Below is a complete list of the different classes of objects, and the modes of access permitted for each. The
individual modes are ordered corresponding to their position in the bit mask representing the a mode set. The
modes are given below according to the defined ordering. (For example, the first mode corresponds to bit zero
of the mask; the second, the next to bit one; and so forth.)

All objects share certain properties and access modes. The common modes are given here. They are the first
modes of all objects; modes unique to the various classes are listed below under the individual headings for the
class.

get allows the contents of the property list of an object and the attributes of the object held
in the domain to be examined.

put ailows entries on the property list of an object to be changed.

listen allows broadcast events associated with the object to be declared.

broadcast allows events associated with the object to be signalled.

reserved-global-modes (4)
are four modes reserved for future enhancements to the system. In general, it is advisable
for users not to grant these modes of access.

Domalns

A domain object is a catalog. It contains entries for objects and links to objects, the names of the entries, and
the attributes of the objects contained within it.

find permits the domain to be searched for an entry with a particular name. This mode does
not, itself, allow any of the attributes of the object to be obtained, or permit a listing
of all names defined within the domain.

list allows access to the “contents” of a domain. The names and status information about
entries can be examined. Quota usage information about segments and subdomains can
be obtained.

modify permits the “contents™ of the domain to be changed. Catalogued entries can be deleted,
and their names changed. The access-control list of objects in the domain can be edited.
Quota limits can be modified.

use allows another domain to use access granted to the domain. Domains holding “use”
access to another domain are, in effect, the agents or attorneys of the domain.

invoke allows a copy of the domain to he created for the purpose of executing a task object
that resides in the domain.

Scgments
Segments are information containers, serving much the same function as files on other systems.
read allows the contents of the segment to be read.
write allows the contents of the segment to be modified. This includes truncation of the
segment to control use of secondary storage records and control of the maximum length

of the segment.

execute allows the segment to be executed as a program. Normally, an executable segment
should contain position independent code and be protected against write access.

13 Amber Kernel Specification

Tasks

A task represents an executing program. The access modes of task objects allow them to be eontrolled and their
state examined.

status allows the state, status information, and scheduling parameters of the task to be exam-
ined.

writestate allows the state of the task to be modifled.

control allows the task to be activated, started, stopped or killed.

Message Channels

A message channel is a bidirectional communication path. There are two capabilities for a single message channel,

designating the opposing “ends”. These are called the “user” and “server” mode objects, but are functionally
symmetric in all respects.

transmit allows a task to grab the channel, and then send (receive) information to (from) the
alternate end.

Dummy Objects

A dummy object is merely a catalog entry for which no special operations are defined. The only state associated
with a dummy object is its system maintained status attributes and property list. It is intended that dummy
objects be used as building blocks for extended type objects requiring no special representation or place-holders
for other non-protected user-defined objects.

Extended Type Objects

Objects tagged with a seal at the time of creation are controlled by their type manager (the sealing domain).
The system places an interpretation on the common three modes of an extended type object, that is, get, put,
listen, broadcast and the reserved modes. The remaining modes are not defined by the system and may be put
to any use by the type manager of the object. (Type managers should, however, observe the rule that modes
be positive, that is, the presence of a mode allows the user to perform more — not fewer — operations on the
object than if the mode were not present.)

Amber Kernel Specification 14

METHOD OF INTERFACE DEFINITION

A design goal of Amber is to allow the user a choice of programming language with which to write system pro-
grams. For this reason, the interfaces are defined using an abstract formulation which does not correspond to any
particular programming language. Instead, it uses a limited set of constructs selected from major programming
languages now in existence.

It will be possible to define a simple translation from the interface definitions to declarations of suitably rich lan-
guages. Whenever a language implementation uses the standard runtime environment and data representations
assumed, programs written in that language can directly call the kernel routines in the manner indicated by this
specification. In particular, the implementations of Pascal and Ada will be compatible with the kernel. Lan-
guages using a nonstandard environment or nonstandard data representations (e.g. LISP) will require wrappers
for the kernel procedures.

Interface Definitions

An interface definition consists of a textual description of its function, a sample call labeling the parameters, a
list of the parameters, and a list of exceptional conditions.

The description of the interface indicates the operation which is performed and the relationship to other interfaces.
Specific details of the kernel function, beyond that given in the preceeding overview, are included. This section
also contains any usage notes which may be appropriate.

The sample call gives a stylized procedure or function invocation. This gives the name of the interface, the name
of each formal parameter, the order of the parameters, and, in the case of a function, the name of the value
assigned the value returned by the function. Consider the following examples.

time = clock read ()
wait . (eveat_id, time out. status)

The first is a function invocation. The interface has no parameters and returns a value, called time. The second
is a procedure invocation, with three parameters.

The parameter section enumerates all of the parameters and describes their usage. A header line gives the name
of the parameter, its data type and its parameter type. A textual description follows.

The parameter type denotes the parameter’s mode (value or reference) and access (input, output, or input-
output). These keywords arc given for all explicit parameters. If the access is omitted, then value is assumed.
The keyword, result, denotes a function return value. (Note that kernel functions are restricted to returning
only simple scalar values such as integers, status codes or boolean flags.)

The description of a parameter includes all information necessary to understand the use of the parameter. In
particular, the description of a capability parameter will give the modes of access required for the operation.

When a parameter uses a structure type that is unique to that routine, it is convenient to follow the parameter
definition immediately with the definition of the structure type. This includes both the structure declaration
and the list of field definitions, and is inserted into the list of parameters.

The exceptional conditions section enumerates unusual circumstances that may abort the operation, occur as a
side eﬂ'ect or result in partial completion. With each interface, only those conditions which are peculiar to the
operation, which may occur during normal execution, or have a special significance to the operation are given.

Other common error conditions, such as access violations, are listed at the end of this document in the “Common
Exceptions” section.

Several techniques are used to describe the conditions. First of all, a logical predicate involving the return values
may be given. The condition is assumed to exist when the predicate evaluates to true. Second, the name of
a bardware or software trap may appear. This indicates that the trap has occured. Third, if the name of a
condition appears, it indicates that the condition is signalled. Fourth, the name of an status code may be given.
In this case, the standard condition error has been signalled with a parameter equal to this code. In the last two

15 Amber Kernel Specification

cases, additional parameters to the signal operation may serve to describe the cause of the exception.

Type Definltions

Two methods are used to define the types of routine parameters or the fields of data structures. The type may

be specified as one of several primitive classes, or a type name may be used which refers to a primitive class
definition.

All scalar types, i.e. integer subranges or enumeration types, are defined essentially as if they were primitive
types. That is, their names are introduced, and the properties of the type given in a textual description. No
specific representation is given. For each standard language, a set of declarations or macros for the types must
be constructed. The standard scalar types are given in the “Standard Data Types” section below.

A character string is defined using a type definition which gives the length of the string. There are two formats.
string string (length)

The first format is used only for the type of a parameter and indicates that the string is of arbitrary length.
The length of the actual parameter is passed along with its value. The second format can be used both for
parameters and fields. The length value may be either a nonnegative integer constant or in the case of a field,
the name of a preceding field which contains the actual length of the string.

Pointer types have two basic formats, each which may be qualified by the optional “relative” keyword:

pointer ({type name) } relative
pointer

In the first format, the type of the data pointed to is specified. This asserts that the program is incorrect if the
pointer does not address an item of that type. In the second format, the target type is not specified, and the
pointer may point to data of any type. Typically, the latter format is used when the value is a simple address in
memory. The “relative” prefix indicates that the pointer value does not contain an absolute address, but rather
a self-relative displacement for the addressed item.

Array types are defined as follows:
array | lower-hound .. upper-bound | of element-type

The bounds may be given as integer constants or, in the case of an array which is a field of a record, the name
of a preceding field which contains the bound of the array. If a bound is not fixed, an asterisk (“s”) is used. In
this case, the array parameter is followed by an implicit parameter which is the actual bound.

Data structures are defined using the format of the Amber dialect of Pascal. A record type definition is given
defining the name of the record type and each of the fields. After the declaration of the structure, textual
descriptions of the usage of each field is given.

An array of structures may be defined by following the structure type name with a parenthesized bound list as
in an array definition.

Type names are introduced in one of several ways. First, the type may be explicitly defined in a separate section,
much like a routine description. This is used primarily for widely used data structures. Second, the definition
may be implicitly given as the type of a parameter or field. The definition is interspersed with the parameter
of field definition. This is done for types which have only a single reference. Third, the type name may be the
name of one of the primitive types whose properties are described below.

Status Code Deflnition

The codes which are returned by kernel routines or contained in messages signalled with the error condition serve
to indicate the success, failure or status of the operation performed. As the use of status codes is a common

technique used by both system and applications programs, a general purpose mechanism has been defined for
constructing error tables.

Amber Kernel Specification 16

The value of a code is in fact an encoded reference to a table which contains information about the cause of
the error. At present, only textual messages describing the situation will be available; however, more advanced
information could be added at a later time without difficulty. Only the absolute value of the code is meaningful
to identify the error. Values less than zero indicate that an unrecoverable error has occurred, while values greater
than zero denote warning or status information. Zero is defined to mean no error.

The encoding technique allows for references to a large number of different tables. Thus, while there is a single
kernel table, applications may deflne an essentially unlimited number of special purpose tables. The significant
point is that the codes from different sources may be intermixed, and the encoding allows the identify of the
table to be reconstructed. Thus, one application may pass on codes that it obtains from lower level modules.

Utility routines are defined to create the tables, assign the values of the codes, and to extract information
associated with a code from the table to which it refers. These routines run in the user domain, and are not a
necessary part of the kernel support. Only the codes need to be known.

By convention, all codes are given symbolic values identifying the table in which they appear. For example, all
kernel codes begin with the prefix “syscode.”. Codes from application error tables may be assigned other names.

Additional details about this facility will appear in documentation of user support routines.

17

Amber Kernel Specification

STANDARD DATA TYPES

The following are definitions of the standard data types considered primitive by the kernel.

boolean

integer

is a logical flag. The constants true and false are defined.

designates a single-word integer value. The exact range of this type is not specified, and
therefore the program should not rely on the implementation dependent limits.

unsigned integer

segment _size

segment _offset
signed _segment _
bit _offset

storage _unit

char index

system _time

version _id

unique _id

object _name

hierarchy _depth

entry id

describes a non-negative, integer, counting value. The range is left imprecisely defined
as for the integer type.

gives the type of value denoting the size of a segment. The range allows for the maximum
number of addressible units within a segment. It should be used for values giving
segment or data structure sizes.

gives the type of an address offset. The range allows for all offsets in units of addressible
units.

offset
gives the type of a displacement within a segment.

gives the type of an absolute bit offset within a segment.

is a data type which packs like an addressable unit. An array of some number of
storage units will have the size of that number of contiguous units. Two constants are
associated with this type. bits_per unit gives the number of bits in a storage unit;
max_segment size gives the maximum number of storage units in a segment.

is the type of an integer which can be used as the index of any string. It allows for an
offset of -1 and of the value which is one greater than the maximum string length.

is a date/time stamp. They can be used to represent intervals, displacements or ab-
solute values. The convention for representing absolute values uses a time origin of
0:00, January 1, 1900. The times are given in units of system_time_second ticks per
second. The constant, before time, denotes the “negative infinity” time; the constant,
after time i3 “positive infinity”

gives the type of a structure version number. Most structures in Amber which may
last from task to task or system to system are given version numbers. This allows the
software to recognize structures which may have been created by an old version.

denotes a unique value. They are used, for example, to identify objects in the storage
system, but can be used for similar purpuses by the user. A kernel procedure is provided
that returns different values on each call. Thus, any two unique id’s which are the same,
must denote the same object. The representation of an unigue identifier is an unsigned
integer double-word. The constant null vnique id {zero) is used to denote an undeflned
value of this type.

is the type of the name of an object catalogued in a domain. Such names are character
strings containing from 1 to 48 of the 95 printable ASCII characters. Trailing blanks are
not significant. The constant max_object name length is deflned and gives the current
name length limit.

is a constant which gives the maximum number of levels of names of an object cataloged
in the storage system. The current value is 12, which allows for 11 levels of domains
and the name of the terminal object itself.

A entry id value gives the unique identifler of a object or link cataloged in a domain.

Amber Kernel Specification 18

When an entry id alone is used in a kernel operation, it denotes the object (or target
object in the case of a link) to be operated on. When both a domain and entry id are
used in a kernel operation (such as set_names_) it is the entry itself which is to be
operated on. A special value, null_id, is defined; it refers to no entry and can be used
as a place holder or undefined value.

access_mode set

object _class

status_code

event _id

wakeup_id

processor_id

processor_set

task priority

is the type of the access mode set of an object. The representation is a bit string of
maximum length 32. The meaning of each individual bit is dependent on the particular
type of object; however, the requirement is made that a bit turned on represent an
increase in privilege. The constants, full_mode _set and null_mode _set, are defined and
give the set of all modes and the empty set respectively. (In addition, constants will be
defined for the modes of each primitive class of objects.)

is the type of the set of all primitive classes of objects. The members of this set are
defined by the constants: domain_object, segment_object, channel_object, task_object,
sealed object and dummy _object.

is the type for a standard system status code. Such codes are returned by procedures
to indicate the success or failure of a requested operation. The representation is a large
integer encoding a reference to a table which contains a description of the error or
other condition. The absolute value only is meaningful to identify the message. Values
less than zero are used to denote unrecoverable errors; values greater than zero denote
warning or status information. Zero is defined to mean no error.

is the type of event identifiers used in the broadcast mechanism. The internal represen-
tation is an unsigned integer double-word. The constant, null_event_id (zero), denotes
an undeflned value of this type.

is the type of a wakeup index. It is represented as an unsigned integer single-word.
The maximum wakeup index is deflned on a per installation basis. The constant,
pull_wakeup_id (zero), denotes an undefined value of this type.

is a subrange type which gives the numeric identifiers of the different processors. This
value lies in the range 0 to max_processor number.

is a type denoting a set of processors. If element n of the set is on, then processor n is
selected. The constant all_processors gives the set of all processors.

is a subrange type giving scheduling priority values. A priority value lies in the range 0
to max_priority.

19 Amber Kernel Specification

GATE: create _domain _

This creates a domain object. The owner of the new domain is set to the owner of the current domain. The
owner may be changed by a subsequent, privileged operation.

id = create _domain (domain, neame, seal, volume, modes)
where:

domain: entry id input
designates the domain in which the subdomain is to be created. (If null, then the current domain
is used.} “Modify” access to this domain is required.

name: string input
if non-blank, this gives the name to be given to the new domain. This must not be a duplicate of

any other name in the domain. If the name is blank. then the new domain has no name and can
only be referenced by id.

seal: entry _id inpnt
if non-null, designates the domain as a protected, extended type object whose representation is a

domain. Access to the unseal the representation is allowed only to this domain (or its agents). No
special access to the seal domain is required.

volume: unique id input
designates the volume on which the domain is to reside. If pull, then the default domain volume

is taken from the parent (containing) domain. If the containing domain resides on a second class
volume, this must be the same volume.

modes: access_modes input
if non-null, this gives the modes of access to be granted to the containing domain. An access-control

list entry for the domain is created to permit the access; this entry may be modified or deleted to
change the access, subsequently.

id: entry id result
is assigned the id of the domain created.

Exceptional conditions:

syscode.max hierarchy depth_reached
An attempt has been made to create a domain at the deepest level of the hierarchy. No objects may
be appended without exceeded the maximum permitted depth, so the operation fails.

Amber Kernel Specification 20

GATE: set_domain_owner _

This is used to set the principal which is responsible for a domain. Since a domain is considered to have implicit
rights to use access granted to its owner, this operation greatly affects the privileges of a domain and is therefore
privileged.

set_domain owner (domain, owner)

where:

domain: entry _id input
designates the domain for which the owner is to be set. No special access to this domain is required.

owner: entry _id input
designates the domain which is to be identified as the owner of the other.

21 Amber Kernel Specification

GATE: move object _

This moves an object from one domain to another. In addition, the volume on which segment and domain objects
reside may be changed.

The object, its access control list and its attributes are transferred to the new domain. The transplanted object
retains the names of the original. (If a name conflict would result, an error is reported and the move is not
performed.) An address which is assigned to the object is deleted, so that a new mapping must be performed if
required. The uid of the object is preserved; however, all outstanding links to the object are invalidated.

Movement of an object must maintain the following constraint: if a domain resides on a second-class volume,
then all inferior objects must reside on the same second class volume; if a domain resides on a first-class volume,
then inferiors may reside on any first- or second-class volume.

Note that when a domain is moved from one volume to another, the default volumes for the creation of inferior
objects may become inconsistent with respect to the volume class distinction. The user should be careful to
change the defaults if necessary.

This operation may be used to change only the volume on which an object resides, by specifying the same domain
as the source and target of the move.

This gate has not yet been implemented.

move _object (old domain, object, new_domain, new_volume, new _object)

where:

old _domain: entry _id input
gives the domain in which the object originally appears. “Modify” access to this domain is required.

object: entry_id input
i3 the id (within old _domain) of the object to be moved. The names and access control list are
copied from this link. No special access to the object, itself, is required.

new _domain: entry_id input
designates the domain to which the object is to be moved. If this is the same as the old domain —

i.e., only the volume of the object is being changed, then no further access is required; if this is a
different domain, then “modify” access is necessary.

new _volume: unique id input
designates the volume to which the object is to be moved. (If null, then the default volume from
the new domain is used.) No special access is required for the volume; however, there must be
sufficient quota within the containing domain to hold the object on the volume. (This is ignored
for objects other than a segment or domain.)

Exceptional conditions:

syscode.uame_duplication

The name of the object being moved conflicts with the name of an existing entry in the destination
doamin. This error does not occur when the domain containing the object is not being changed.

syscode.hierarchy depth_exceeded

The number of domain levels which would have been created by the operation exceeded the maximum

depth. For example, with a2 maximum depth of 12, a domain with 8 sublevels could not be moved into
a domain at level 4.

Amber Kernel Specification 22

GATE: lookup _

This searches a domain for an entry (object or link) with a specified name, and returns the link by which it can
be referenced in other operations.

id = lookup (domain, name)
where:

domain: entry id input

designates the domain to be searched. (If null, then the current domain is used.) “Find” access to
this domain is required.

name: string input
gives the name of the entry to be searched for. It must not be the null string.

id: entry _id result
is assigned the identifier of the entry found.

Exceptional conditions:

id = oull _id
indicates that no object was found with the specified name. This condition also occurs if one of the
error conditions is signalled.

23 Amber Kernel Specification

GATE: list entries_
This is an enquiry operation that provides a list of all entries (objects or links) in a domain.

list_entries _ (domain, entry id list ptr, max entries)

where:
domain: entry_id input
designates the domain whose contents are to be listed. “List” access to the domain is required.
entry id list_ptr: pointer (entry id_list) input
gives the address of an area into which the list of objects can be placed. The format of this structure
is given below,
type entry id list = record
version: version id;
n_ids: ursigned_integer,
entry: array [1..n_ids] of record
id: entry id;
primary name: object name;
link: boolean;
end;
end;
where:

entry id list.version

gives the version of the structure being used. Currently, only one version is supported,
and this fleld should be set to 1 prior to the call.

entry _id list.n _ids
gives the count of the number of objects returned.

entry _id _list.entry
is an array that contains the entries. The array is not ordered in any meaningful way.

entry id_list.entry.id
gives the id of the object or link.

entry id_list.entry.name

gives the text of the primary name of the object or link. If the object has no names,
this field will be blank.

max _entries: integer input
gives the maximum number of name list entries that have been allocated.

Exceptional conditions:

entry _id _list.n_ids > max_entries

occurs when the structure area is too small to hold all of the entries in the directory. All available
entries are filled in.

Amber Kernel Specification 24

GATE: list _entries_status_

This is an enquiry operation that provides a list of all entries (objects or links) in a domain and returns status
information for each entry.

list_entries status_(domain, entry_status list ptr, max_entries, path_list, n_paths)

where:

domain: entry _id input
designates the domain whose contents are to be listed. “List” access to the domain is required.

entry _status_list_ptr: pointer (entry_ status_list) input
gives the address of an area into which the list of objects can be placed. The format of this structure
is given below.

max _entries: integer input
gives the maximum number of name list entries that have been allocated.

path list: array [1..«| of entry id input
gives a list of domains to be used to obtain the “get” access required to return status information

for the entries. If no paths in the list provide “get” access to an entry, status information will not
be returned for that entry.

n_paths: unsigned _integer input
gives the number of valid entries in the path_list array

type entry status_liat = record
version: version id;
n _ids: cardinal;
entry: array [1..n_ids] of record
id: entry id;
primary name: object_name;
code: status_code;
modes: access _mode_set,;
info: object status_type;
end;
end;

where:

entry _status_list.version

gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

entry _status list.n ids
gives the count of the number of objects returned.

cotry _status_list.entry
is an array that contains the entries. The array is not ordered in any meaningful way.

entry_status_list.entry.id
gives the id of the object or link.

entry status_list.entry.primary _name

gives the text of the primary name of the object or link. If the object has no names,
this field will be blank.

entry_status_list.entry.code

If this is non-zero, then an error was encountered while trying to gather status infor-
mation for this entry. Some, or all of that information may be incorrect depending on

25 Amber Kernel Specification

the error.

entry _status_list.entry.modes

gives the access obtained to this object using the first domain in path_list that provided
at least “get” access. If “get” access is pot in this set, the status information is not
valid for this entry.

entry _status_list.entry.info

This is a record containing status information for the object. See the description of the
object_status_ gate for details.

Exceptional conditions:

entry _status_list.n_ids > max_entries

occurs when the structure area is too small to hold all the entries in the directory. All available entries
are filled in.

Amber Kernel Specification 26

GATE: list _entries_by pame

This is an enquiry operation that provides a list of all names of objects or links in a domain. The caller may
request a list of all the names or only those whose names begin with a certain string. This feature assists user
level operations which provide wild card matching in names or name completion.

Objects or links in the domain that have no non-blank names will not appear in the list returned by this entry.

list_entries by name (domain, prefix, case _sensitive, link name list ptr,
max_entry_names)

where:

domain: entry _id input
designates the domain whose contents are to be listed. “List” access to the domain is required.

prefix: string input
gives the name preflx to be searched for. For example, a prefix of “a” selects all links whose names
begin with the letter “a”. If a zero-length string is used, all entries including those with no explicit
names, are deleted.

case_sensitive: boolean input
indicates that the case of alphabetic characters should be considered when matching the prefix. If
this is set to false, a prefix of “a”™ matches “a” or “A”: if true, “a” matches only “a”.

entry_name list_ptr: pointer (entry name list) input
gives the address of an area into which the list of names with the specified prefix can be placed.
The format of this structure is given below.

type entry name list = record

version: version id;

n_names: unsigned integer;

entry: array [1..n_names] of record
name: object name;
id: entry id;
end;

ond;

where:

entry name _list.version
gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

entry name list.n names
gives the count of the number of names returned.

entry _name _list.entry

is an array that contains the names/entries selected. The array is ordered in alphabetic
order according to the names.

entry _name _list.entry.name
gives the text of the name of the object or link.

entry name _list.entry.id
gives the id of the object or link corresponding to the selected name. Since an entry
may have several names, it may be listed several times under different names.

max_entry names: integer input
gives the maximum number of name list entries that have been allocated.

27 Amber Kernel Specification

Exceptional conditions:

entry _name _list.n_names > max_entry _names
occurs when the structure area is too small to hold all names selected by the search. All available
entries are filled in.

Amber Kernel Specification 28

GATE: link _info

This is an enquiry function that returns status information kept for a link. If applied to an object entry, default
information is returned.

link info (domain, id, link info, max paths)
where:

domain: entry id input
designates the domain containing the link. (If null, then the current domain is used.) “List” access
to this domain is required.

id: entry _id input
designates the entry for which the status is to be returned. No special access to the target of the
object is required.

link _info: link info type reference input-output
is a structure whose flelds are assigned the status information. A version fleld must be set on input
and specifies the version of the structure to be used.

max _paths: upsigned integer input
gives the maximum number of access path entries for which space has been allocated in the link _info
structure. Setting this parameter to zero causes the access path not to be returned.

type link info type = reccrd
version: version i4,
time created: system_time;
time entry modified: system time;
time entry dumped: system time;
modes: access _mode set;
target: entry id;
n_patha: unsigned integer,
access path: array [n_paths] of entry id,
end;

where:

link _info.version
gives the version of the structure. Currently, only one version is supported and this
value should be set to 1 on input.

link info.time created
gives the time at which the link or object was first created.

link _info.time entry modified
gives the time at which the entry for the link or object was last modified. This includes
creation or any alterations to its names.

link info.time entry dumped
gives the time at which the entry information for the link or object was last dumped

by the backup system. A value of before_time is returned if the information has never
been dumped.

link info.modes

gives the limit on the modes of access which may be obtained with this link. If the id
denotes a normal object, rather than a link, this value is set to the universal mode set.

link info.target
gives the id of the object that the link points to. If the id denotes a normal object,
rather than a link, this value is set to the null id. This is is created for the sole purpose

29 Amber Kernel Specification

of identifying the target. The caller should delete the link when done.

link _info.n_paths
gives the number of valid entries in the access_path array, below.

link _info.access _path

gives the access path used to obtain access to the object. This is an array whose first
element gives the principal of the domain (owner) and whose last element is compared
against the access control list of the object. Intermediate entries are those which es-
tablish a chain of “use” access to the last entry. In the case of an object entry, the
containing domain is returned. (The ids are for links created for the sole purpose of
identifying the principal; it has no name and allows no access. The caller should delete
the link when done.)

Exceptional conditions:

link info.n paths > max_paths
occurs when the number of access path entries exceeds the space allocated; n_paths gives the correct
number of entries, and the rest of the information structure is filled in.

Amber Kernel Specification 30

GATE: get _pathname

This determines the location of an object in the storage system. lts pathname is returned; for each component
of the path, both the uid and the primary name (if available) of the entry is supplied.

get pathname (object, pathname)

where:

where:

object: entry id input
designates the object whose location is to be determined. No special access modes are required for
this operation.

pathname: object _pathname reference output
is set to contain the pathname information of the object.

type object pathname = record

version: version id;

depth: unsigned _integer;

known depth: unsigned _integer;

status: status code;

component: array [1..Max Hierarchy Depth] of record
name: object name;
id: entry id;
end;

end;

object pathname.version

gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1.

object pathname.depth

gives the depth of the object in the domain hierarchy. For example, the depth of the
root is 0, and the depth of an object in the root domain is 1. This value can never
be greater than the constant, Hierarchy Depth. Only this pumber of entries in the
component array is used.

object pathname.known depth

gives the depth to which the names of the object are known. In the case of a link
to an object, it may not be possible to determine the full pathname of the target for
two reasons. First, the subtree of the hierarchy containing the object may be on an
unmounted volume; only the names of the components in domains which are not offline
can be supplied. Second, the object or a subtree containing the object may have been
deleted since the link was created; only the remaining components can be identified.
The status field indicates the reason.

object _pathname.status

indicates any problem in locating an object. If 0, then the full pathname is succesfully
returned. If syscode.object_offline, then part of the hierarchy containing the object is
not mounted. If syscode.entry not_found, then the object has been deleted.

object _pathname.component

is an array contain the name and unique id of each component of the pathname of the
object. Entry 1 corresponds to the domain which appears in the root, and entry depth
corresponds to the deepest leaf that is the object itself.

object 7pathname.compouent .name

gives the primary name of a component. This is all blank if the entry has no name, or

31

Amber Kernel Specification

if its depth is greater than known_depth.

object _pathname.component.id
gives the unique identifier of the object. This can always be returned.

Amber Kernel Specification 32

GATE: list_names _
This operation returns all of the names on a entry.

list _names (domain, id, name list ptr, max nanes)

where:

domain: entry id input
designates the domain in which the entry appears. (If null, then the current domain is assumed.)
“List” access to this domain is required.

id: entry id input
designates the entry whose names are to be listed. No special access is required.

name _list_ptr: pointer (name list) input
is the address of the area into which a structure containing the list of names is placed. The format
of this structure is given below.

type name list = record
version: version_id,
n_names: unsigned integer;
names: array (1..n _names] of object nanme;
end,

where:

name list.version

gives the version of the structure being used. Curtently, only one version is supported,
and this field should be set to 1 prior to the call.

name list.n _names
gives the number of names on the entry.

name _list.names

is an array that contains the names on the entry. The first name listed is the primary
name on the entry

max_names: integer input
gives the maximum number of names that have been allocated.

Exceptional conditions:

name_list.n_names > max names

occurs when the entry has more names than space was allocated for. As many names as possble are
filled in.

33

Amber Kernel Specification

GATE: set names_

This sets the list of names for an entry. The order of the names issignificant. The first name is the primary name,

which is returbed by several other operations, and the order of the other names is preserved by the list_names_
operation.

set names (domain, id, names, n_names, validation_tixe)

where:

domain: entry _id input
designates the domain in which the entry appears. (If null, then the current domain is assumed.)
“Modify™ access to this domain is required.

id: entry id input
designates the entry whose names are to be changed. No access is required to the target object.

names: array [1..3] of object _name input

is the array of names to be set. The name order follows increasing subscripts. Only “n_names”
elements are used.

n_names: unsigned_integer input
gives the number of names in the “names” array. If zero, then the entry is left without a textual
name and can only be referenced by id.

validation time: system _time input
is an absolute time used to validate the change to the name list. If the list being set is derived from
the existing list (e.g. from list_names_), the validation time is the time at which the original list
was obtained. If the domain information for the entry (possibly including the names) was modified
after this time, then the operation is not attempted. A value of “After_Time” suppresses this check.

Exceptional conditions:

syscode.name _list _empty

is an error which occurs if the number of names is zero or less,

syscode.validation fails

is an error signal which indicates that the validation check failed.

Amber Kernel Specification 34

GATE: delete _entry _
This operation deletes an object or link from a domain.

If there is a memory mapping associated with the entry (e.g. a segment or a link to a segment), then the memory
slot is freed and may be reused.

No restriction is placed on the deletion of protected objects. Ouly the access to the containing domain is
considered.

If the object being deleted is a domain, then all inferior objects are deleted. This operation succeeds regardless
of the access available to inferior domains.

delete entry (domain, id)
where:
domain: entry_id input
designates the domain in which the entry appears. (If null, then the current domain is assumed.)

“Modify” access to this domain is required.

id: entry _id input
designates the entry that is to be deleted.

35 Amber Kernel Specification

GATE: create link _
This operation creates a link to an object.

id = create_link_ (source_domain, source_id, modes, path, target domain, target name)

where:

source_domain: entry id input
designates the domain containing the object or a link to the object. (If null, then the current domain
is used.) “Find” access to this domain is required.

source_id: entry_id input
gives the identifier of a entry within the above domain. If this entry is an object, then the link is

made to point to the object; if the entry is a link, then the new link is made to point at the target
object.

modes: access_mode set input

specifies a limit on the modes of access to be used with this link. Any set of modes may be specified,
but their exercise is controlled by the access control list of the object. These modes may not be
changed.

path: entry id input
is a link to the principal domain which is the final component of the of the access path. No access
is required to specify this domain. If path is null, then the target object (as a single component)
must be a legal path for the target domain, i.e. it mnst be either the target domain or its owner.
If path is a link which was obtained from a revocable seal, then an error occurs. Otherwise, an
access path is created using this as the final component and the access path to it as the preceding
components. For example, to designate an access path O.G, where O is the owner of the current
domain, and G is some principal that O has access to. One must link to O specifying a null path

and then link to G specifying the O link as a path; the G link may then be used as an access path
for O.G.

target domain: entry id input

designates the domain in which the new link is to be placed. (If null, then the current domain is
used.} “Modify” access to this domain is required.

target name: string input
if non-blank, this gives the name to be given to the new link. This must not be a duplicate of the

name of any other name in the domain. If the name is blank, then the link has no name and must
be referenced by uid alone.

id: entry id result
is assigned the identifier for the new link.

Exceptional conditions:

syscode.invalid access_path

is an error signal which occurs (1) if the path is null and the target is not a valid frst component of

an access path, (2) if the link was derived from a revocable seal, or (3} if the path refers directly to an
object rather than a link.

Amber Kernel Specification 36

GATE: create link from acl_

This operation creates a link to an object. Unlike create_link , where a specific access-path is specified, the
caller supplies a list of possible access-paths with which to attempt to obtain access. This operation selects once
such entry which provides the requested access to the object.

id = create link from acl (source domain, source id, modes, paths, n_paths, target domain,
target name)

where:

source_domain: entry_id input
designates the domain containing the object or a link to the object. (If null, then the current domain
is used.) “Find” access to this domain is required.

source _id: entry_id input
gives the identifier of a entry within the above domain. If this entry is an object, then the link is

made to point to the object; if the entry is a link, then the new link is made to point at the target
object.

modes: access _mode_set input
specifies a limit on the modes of access to be used with this link. Any set of modes may be specified,

but their exercise is controlled by the access control list of the object. These modes may not be
changed.

paths: array [1..s] of entry _id input
is an array of entry ids for principal domains giving possible access paths. (Only the first n_paths
entries are used.) The first (lowest subscript) for which there is an access control list entry supplying
the required modes is selected. This is used to form the access path in the same manner as is used
in the create_link operation; the same restrictions applies.

n_paths: unsigned integer input
gives the number of entries in the above array that are used.

target domain: entry id input

designates the domain in which the new link is to be placed. (If null, then the current domain is
used.) “Modify” access to this domain is required.

target name: string input
if non-blank, this gives the name to be given to the new link. This must not be a duplicate of the

name of any other link in the domain. If the name is blank, then the link has no name and must
be referenced by uid alone.

id: entry _id result
is assigned the identifier for the new link.

Exceptional conditions:

-~nde.invalid_access_path
:s an error signal which occurs if the path cannot be legally used because the path was derived from a
revocable seal, or if the path refers directly to an object in the current domain rather than a link.

37 Amber Kernel Specification
GATE: list _acl_
This returns the contents of the access control list for an object.

list_acl (domain, objlink, acl_ptr, max_entries)

where:

domain: entry id input
designates the domain in which the object resides. (If null, then the current domain is assumed.)
The operation is allowed if “list” access to the domain is available.

objlink: entry _id input

is the id, within the above domain, of the object whose ACL is to be listed. An error occurs if this
id refers to a link.

acl_ptr: pointer (acl) input

is the address of an area into which the access control list is to be placed. The format is given
below.

type acl = record
version: version id,
n_entries: unsigned integer;
entry: array [1..n_caps] of record
modes: access_mode _set;
principal: entry_id;
end;

where:

acl.version

gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call

acl.n_entries
gives the number of entries in the access control list.

acl.modes
gives the modes of access held by the associated principal.

acl.principal

is the id of a link to the principal which holds access to the object. {The link is created
for the sole purpose of identifying the principal; it has no name and allows no access.

The caller should delete the link when done.) If this is the null id, then the entry is the
default for all users.

max _entries: integer input
gives the maximum number of access control list entries that may be returned.

Exceptional conditions:

syscode.not_an object
is an error signal which occurs if the id specified refers to a link rather than an object.

acl.n_entries > max_entries

occurs if there are more access control list entries than space has been allocated for. As many entries
as possible are filled in.

Amber Kernel Specification 38

GATE: set_acl_
This set the access control list of an object.

set_acl_ (domain, id, acl ptr, validation_time)
where:

domain: entry id input
designates the domain in which the object resides. (If null, then the current domain is assumed.)
“Modify” access to the domain is required.

id: entry _id input
is the id, within the above domain, of the object whose ACL is to be be set.

acl_ptr: pointer (acl) input
is the address of the access control list for the object. The format is given below.

type acl = record
version: version id;
n_entries: unsigned _integer;
entry: array [1..n_ceps] of record
nodes: access _mode _pet;
principal: entry id;
end;

where:

acl.version

gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

acln_entries
gives the number of entries in the access control list.

acl.modes
gives the modes of access to be granted to the associated principal.

acl.principal
is the entry for the principal domain which is to granted access. If this value is null _id,
then the entry is the default for all users.

validation_time: system time input
is an absolute time used to validate the change to the name list. If the list being set is derived from
the existing list {e.g. from list_acl), the validation time is the time at which the original list was
obtained. If the domain information for the link (possibly including the ACL) was modified after
this time, then the operation is not attempted. A value of “After_ Time” suppresses this check.

Ulxzceptional conditions:

syscode.duplicate acl_entry
occurs if the same prinicipal is named in more than one access control list entry.

syscode.not_an_object
is an error signal which occurs if the id specified refers to a link rather than an object.

acl.n_entries > max _entries

occurs if there are more access control list entries than space has been allocated for. As many entries
as possible are filled in.

39 Amber Kernel Specification

GATE: seal_object _

This operation creates a sealed object containing a link having the caller’s access to some object (which may be
another extended type object); this permits the domain which is allowed to unseal the object to obtain a copy
of the protected link. Since the link will have the originator’s access, the operation may be used to pass access
from one domain to another without altering the access control list of the object. The sealing operation may be
specified to be revocable, in which case deletion of the sealed object results in revocation of access from any link
derived from the sealed object.

The sealed object created by this operation is equivalent to an extended type object created with create_segment _

(create_domain , etc.), except that the representation is not strictly hidden. It may be given an access control
list holding extended access.

The sealing mechanism, including this gate, has not yet been implemented.

id = seal object (source domain, source_id, seal, revoke, modes, path, target domain,
target name)

where:

source domain: entry id input
designates the domain containing the object or a link to the object. (If null, then the current domain
is used.) No special access to this domain is required.

source id: entry id input
gives the identifier of a entry within the above domain. If this entry is an object, then the link is

made to point to the object; if the entry is a link, then the new link is made to point at the target
object.

modes: access _mode _sget input

specifies the modes of access which can be obtained with the unsealed link. Use of these modes is
further limited by the access control list of the object. These modes may not be changed.

seal: entry id input

designates the domain which is allowed to unseal the object. No special access to the this domain
13 required.

revoke: boolean input

if true, then the seal is revocable and deletion of the sealed object revokes access from links derived
from it.

path: entry _id input
designates the principal domain which is the final component of the of the access path. No access

is required to specify this domain. The full access path is derived as in the create link operation;
however, it may not be null.

target domain: entry id input
designates the domain in which the new link is to be placed. (If null, then the current domain is
used.) “Modify” access to this domain is required.

target name: string input
if non-blank, this gives the name to be given to the new sealed object. This must not be a duplicate

of any other name in the domain. If the name is blank, then the new object has no name and can
only be referenced by id.

id: entry _id result
is assigned the identifier for the new sealed object.

Exceptional conditions:

syscode.invalid _access _path

Amber Kernel Specification 40

is an error signal which occurs (1) if the path is null, (2) if the link was derived from a revocable seal,
or (3) if the path refers directly to an object rather than a link.

41 Amber Kernel Specification
GATE: unseal object _

This unseals the representation of a protected, extended type object and makes it available for access. A link for
the representation of the object is created and entered into a specified domain.

The sealing mechanism, including this gate, has not yet been implemented.

id = unseal _object (object, seal, domain, name, modes)

where:

object: entry _id input
designates the extended object to be unsealed.

seal: entry id input

gives the domain which manages the object. (If null, then the current domain is assumed.) “Use”
access to this domain is required.

domain: entry _id input
designates the domain into which the link for the object representation is to be placed. (If null,
then the current domain is used.} “Modify” access to this domain is required.

name: string input

if non-blank, this gives the name to be given to the new link. This must not be a duplicate of

any other name in the domain. If the name is blank, then the link has no name and can only be
referenced by id.

modes: access_mode _set input
gives a limit on the modes of access to allowed on the representation through the link. If the sealed
object is an extended type object (i.e. it was created with create_segment _, etc.), then these are
the utimate modes of access. If the sealed object holds a sealed link (i.e. it was created with the
seal_link), then these modes are intersected with the modes specified in the seal call.

id: entry _id result
i3 assigned the id of the newly created link.

Exceptional conditions:

syscode.type_mismatch

is an error signal. It indicates that the object could not be unsealed because the sealing domain did
not match the actual sealing domain.

syscode.domain_no_use_access
is an error signal which indicates that access to “use” the sealing domain was lacking.

Amber Kernel Specification 42

GATE: validate access_

This verifies that modes of access that a domain has to an object are suitable to perform some operation. It is

intended that this operation be used by extended type managers to verify that the caller has sufficient access to
perform some operation.

validate access_ (ref, class, seal, required modes, actual_modes, code)

where:

ref: entry id input

designates an entry for the object being referenced. The modes of access allowed through with this
entry are computed and checked.

class: object_class input

gives the primitive type expected. This must match the class of the object (or the class of the
representation of a typed object).

seal: entry id input
gives the domain of the extended type manager of the object. If the object is not a typed object,

then this must be a null value. If the object is an extended-type object, then this must reference
the sealing domain specified at the time of creation of the object.

required_modes: access_mode set input

gives the modes of access required. This must be a subset of the modes allowed to the current
domain, or an error code is returned.

actual_modes: access mode set output
is assigned the computed modes of access.

code: status_code output

is assigned a code indicating whether or not the above tests succeed. The value is zero if all the
tests succeed. Otherwise, the code value will be set to one of the values given below.

Exceptional conditions:

code = syscode.entry _not _found
indicates that the id does not correspond to that of any object catalogued in the current domain.

code = syscode.type_mismatch
indicates that the expected extended type of the object was not correct.

code = syscode.not_afan_({class)
indicate that the primitive class expected did not match the actual class of the object. The code
corresponding to the expected type is used, c.g. syscode.not_a_segment or syscode.not_an_domain.

code = syscode.({class)_no_{mode) access

is signalled if the task does not have a particular mode of access to a non-typed object. The specific code
for the class and mode is used, e.g. syscode.domain_no_find_access or syscode.seg_no_read _access,

code = syscode.incorrect_access

indicates that the task does not have a required access mode to a typed object. This code is used since
there is no standard error message for the modes of an extended type.

43 Amber Kernel Specification

GATE: create _segment _
This creates a segment object.

id = create_segment (domain, name, seal, volume, modes, max_length)
where:

domain: entry id input
designates the domain in which the segment is to be created. The task must have “modify™ access
to the domain.

name: string input
if non-blank, this gives the name to be given to the new segment. This must not be a duplicate of
any other name in the domain. If the name is blank, then the new segment has no name and can
only be referenced by id.

seal: entry _id input
if non-null, designates the segment as a protected, extended type object whose representation is a
segment. Access to unseal the representation is allowed only to this domain (or its agents). No
special access to the sealing domain is required.

modes: access_mode set input
if non-null, this gives the modes of access to be granted to the containing domain. An access-control
list entry for the domain is created to permit the access; this entry may be modified or deleted to
change the access, subsequently.

volume: unique _id input
designates the volume on which the object is to reside. If null, then the default segment volume
is taken from the parent domain. If the containing domain resides on a second class volume, this
must be the same volume.

max _length: segment size input
gives the initial maximum length of the segment in quarter-words. The value must be less than or
equal to 2++31. (The maximum length is enforced the nearest integral page length.

id: entry id result
is assigned the id of the newly created segment.

Amber Kernel Specification 44

GATE: truncate _segment

This operation truncates a segment object. The effect of truncation is to zero a specified amount of storage
starting at a specified place in the segment. All full records within that area of the segment are discarded,
thereby reducing the quota and physical storage utilization of the segment. However, if the segment is wired,
the records are reinstantiated (containing zeros) as they may need to be referenced immediately. The name
“truncate” refers to the common practice of zeroing the records at the end of the segment.

truncate_segment (segment, start, leagth)
where:

segment: entry id input
designates the segment to be truncated. “Write” access to the segment is required.

start: segment size input
designates the address within the segment where zeroing is to begin. This value is rounded down
to the next record boundary (4096 quarter-words).

length: segment size input
gives the length in quarter-words of the area to be zeroed.

45 Amber Kernel Specification
GATE: set_max length _

This operation sets the maximum length of a segment. Any attempt to access locations in the segment beyond
the maximum length causes an addressing trap to occur, and hence provides a bounds-checking mechanism. Since

the hardware only supports this checking to the nearest page boundry that is the granularity of the max_length.
It is expessed in quarter-words anyway.

If the value specified for the maximum length is greater than the current size of the segment (maximum page
number in use), then the segment is first truncated to the specified maximum length.

set _mex length (segment, seg max_length)
where:
segment: entry _id input

designates the segment whose maximum length is to be set. “Write” access to the segment is
required.

seg_max _length: segment _size input
gives the maximum length of the segment in quarter-words. The value must be less than or equal
to 2¢+31. (The maximum length is enforced to the nearest integral page length.

Exceptional conditions:

syscode.invalid_maximum _length
is an error signal indicating that the maximum length value was out of the allowable range.

Amber Kernel Specification 46

GATE: create _special segment _

This creates a “special” segment. A special segment is defined by an implementation dependent descriptor which
describes the object to be made accessible. For example, internal supervisor segments and io-segments may be
accessed via special segments. Creation of these objects is a privileged operation.

The special segment mechanism, including this gate, has not yet been implemented.

id = create special segment (domain, name, ssal, descriptor, modes)

where:

domain: entry _id input
designates the domain in which the object is to be created. The task must have “modify” access to
the domain.

name: string input
if non-blank, this gives the name to be given to the new special segment. This must not be a

duplicate of any other name in the domain. If the name is blank, then the special segment has no
name and can only be referenced by id.

seal: entry_id input
if non-null, designates the special segment as a protected, extended type object whose representation

is an special segment. Access to unseal the representation is allowed only to this domain (or its
agents). No special access to the sealing domain.

descriptor: special _seg_desc _type input
gives the descriptor describing the internal object to be made accessible. The format of this de-
scriptor is not defined at the moment.

modes: access_mode_set input
if non-null, this gives the modes of access to be granted to the containing domain. An access-control

list entry for the domain is created to permit the access; this entry may be modified or deleted to
change the access. subsequently.

id: entry _id result
is assigned the identifier of the link for the newly created object.

47 Amber Kernel Specification

GATE: map_segment _

This operation sets the address of an entry. The effect is to map the (special) segment referenced into the into
address space of the domain, and make it directly addressible by tasks executing in that domain. The modes of
access allowed on locations within the mapped segment are exactly those allowed when the entry id is specified
in a kernel call. (In effect, the address is just name for an object - the name used by the hardware.)

The entry may either be a segment object in the domain, or a link to a segment in the same or another domain.
As there is a one-to-one correspondence between virtual memory slots and the entries (segments or links) in the
domain, a segment may appear in the address space several times — at different addresses, and with different
modes of access.

If there already exists a mapping for a link for a segment, this call may be used to change the address or size.
The object is unmapped from the location it is in, then mapped into a new location. If the new location cannot
be allocated, then the segment is left unmapped.

map segment (domain, id, size, requested_base, address)

where:

domain: entry _id input
designates the domain which holds the link. (If null, then the current domain is used.) “Modify”
access to the domain is required.

id: entry _id input
designates the entry for which a mapping is to be established. No particular modes of access are
required, but whatever modes are available are allowed to instructions which reference locations
corresponding to the segment.

size: segment size tnput
gives the number of quarter-words of virtual memory to be occupied by the segment; this value is
rounded to the next greater boundary required by the hardware and may be greater or less than
the actual length of the segment. If a size of zero is specified, then the maximum length of the
segment is used by default. For a special segment, this argument is ignored, and the system defined
size is used.

requested base: address_ input

if non-null, then this gives the requested base address at which to locate the object; if this is equal
to Null_Address, then the kernel assigns an address on the basis of the size.

address: pointer output

is assigned the address at which the segment appears. If a specific address is requested by the
caller, then this is set to that address. If the operation fails because a slot could not be found for
the object, then a null pointer is returned.

Exceptional conditions:

syscode.duplicate segno

is an error signalled if a requested address has already been allocated. (No such error occurs if the
object is remapped over its original location.)

syscode.invalid _base address

is an error signalled if the requested address is out of range, or is not consistent with the alignment
requirements for the specified size.

Amber Kernel Specification 48

GATE: segment address_

This is an enquiry function that returns the address by which a domain can reference a segment. A mapping

may be established for each link for a segment held by a domain. Thus, the address associated with a particular
link is determined.

address = segment address_ (domain, id)
where:
domain: entry _id input
designates the domain containing the link for the segment. (If null, then the current domain is
used.) The link must allow “list” access for the domain.
id: entry _id input
designates the entry (within the above domain) for which the corresponding address is to be deter-

mined. No special access is required for this operation.

address: pointer result
is assigned the address of the base of the segment referenced by the above link.

49 Amber Kernel Specification

GATE: segment entry _

This is an enquiry function that returns the entry id that corresponds to a particular location in the address
space of a domain.

id = segment entry (domain, address)
where:

domain: entry _id input
designates the domain containing the link used to reference the segment. (If null, then the current
domain is used.) “List” access to the domain must be allowed.

address: pointer input
gives an address within the virtual memory space of the domain. The entry mapped over this
location is returned.

id: entry _id result
is assigned the id of the entry whose mapping includes the above location. If the address is invalid,
then null _entry id is returned and no error is reported.

Amber Kernel Specification 50

GATE: unmap _segment _

This operation deletes the mapping between an entry and locations within the virtual address space of its
containing domain.

unmep segment (domain, id)
where:

domain: entry id input
designates the domain containing the entry. (If null, then the current domain is used.} “Modify”
access must be permitted.

id: entry _id input
designates the segment to be unmapped. This must refer to a segment, but no special access to the
target segment is required.

Exceptional conditions:

syscode.domain_no_modify _access
is an error signal which occurs if “modify” access to the domain is lacking.

51 Amber Kernel Specification
GATE: list_mapped _segments _
This entry returns a list of segments mapped in the specified range in the specified domain.

list_mapped segments (domain, min_addr, max_addr, segment _list ptr, max_sntries)

where:
domain: entry_id input
designates the domain whose address space is to be listed. If this is null, the current domain is
used. “List” access to the domain is required.
min_addr: pointer input
is the lower bound of the portion of the address space to be listed.
max _addr: pointer input
is the upper bound of the portion of the address space to be listed.
segment list_ptr: pointer (mapped segment _list) input
gives the address of an area into which a structure giving the list of segments will be placed. The
format of the structure appears below.
type mapped segment list = record
version: version id;
n_entries: unsigned integer,
entries: array [1..n_entries] of record
segment: entry_id;
address: pointer;
size: segment size;
end;
end;
where:

mapped _segment _list.version

gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

mapped _segment list.n _entries
gives the number of segments which are mapped in the given range.

mapped _segment list.segment
gives the unique identifier of a mapped segment.

mapped _segment list.address
gives the address of the base of the mapped segment.

mapped segment list.size
gives the size, in quarterwords, of the address space allocated to the mapped segment.

max _entries: unsigned _integer input
gives the maximum number of entries that may be returned.

Exceptional conditions:

mapped _segment list.n_entries > max_entries

occurs when there are more mapped segments than have been allowed for. Only the first max_entries
entries are filled in.

Amber Kernel Specification 52

GATE: wire _

This canses a segment or domain to be kept resident in physical memory. (In the case of a segment, the operation
applies only if there is an established mapping for the segment within the referencing domain.)

The pages of the object will be brought into main memory and marked so that they will not be evicted by the
demand paging mechanism. The subroutine does not return until the operation is complete. This is intended for
use with real-time programs, whose code and data must remain resident in main memory to achieve performance
requirements.

All records of the segment or domain up to the current maximum length are assumed to exist. If not (i.e. the
records have never been written), then the missing records are created as zero pages. Note that truncation of a
wired segment does not delete pages of a wired segment but instead zeros them.

This is a privileged operation.
wire (id)
where:

id: entry _id input
is an entry for the object to be wired. Some non-null access to the object is required. For segments,
any combination of “read”, “write”, and “execute” permission is sufficient. For domains, any
combination of “And”, “list”, or “modify” is sufficient.

53 Amber Kernel Specification
GATE: unwire
This allows the storage for a segment or domain to be paged. That is, it reverses the effect of the wire_ primitive.
A reference count is kept for each segment or domain which indicates the number of times that it has been wired
within different active domains. An object is made unwired only when this reference count is zero. No error is
reported if the segment or domain is not currently wired.
This is a privileged operation.

unvire (id)

where:

id: entry _id input
is an entry for the object to be unwired. No special access to the object is required.

Amber Kernel Specification 54

GATE: prepage storage_

This declares that the task will reference a section of its memory in the near future. A request to bring the

addressed area of storage into main memory is queued and processed concurrently with the continued execution
of the program.

This provides a way for a performance-critical task to tell the kernel of the order of its future memory accesses,
in order that more optimal paging can be achieved.

prepage_storage (segment, start, length)

where:

segment: entry_id input

designates the segment whose pages should be brought into memory. “Read” access to the segment
is required.

start: segment _size input

gives the offset of the start of the area to be referenced. This offset is rounded down to the nearest
record boundary.

length: segment _size input
gives the length of the area in quarter-words.

Exceptional conditions:

syscode.invalid _address
is an error signal which indicates that the designated area contains non-existent locations.

55 Amber Kernel Specification
GATE: postpurge _storage _

This declares that the task will not be referencing a section of its memory in the near future. The kernel is then
free to evict the storage for the addressed area from main memory.

This provides a way for a performance-critical task to tell the kernel of the order of its future memory accesses,
in order that more optimal paging can be achieved.

postpurge storage (segment, start, length)
where:

segment: entry_id input

designates the segment whose pages should be evicted from memory. “Read” access to the segment
is required.

start: segment_size input

gives the offset of the start of the area to be purged This offset is rounded down to the nearest
record boundary.

length: segment _size input
gives the length of the area in quarter-words.

Exceptional conditions:

syscode.invalid_address
is an error signal which indicates that the designated area contains non-existent locations.

Amber Kernel Specification 56

GATE: update storage

This ensures that a section of the memory of the current task is in a consistent state. Any storage of the addressed
area for which a modified version is cached in main memory is written to the permanent storage device. The
write occurs concurrently with the continued execution of the program, though the program can wait for the
write to complete.

update_storage (segment, start, length, wait flag)
where:

segment: entry id input
designates the segment whose pages should be updated in permanent storage. “Read” access to
the segment is required.

start: segment _size input
gives the offset of the start of the area to be updated. This offset is rounded down to the nearest
record boundary.

length: segment _size input
gives the length of the area in quarter-words.

wait flag: boolean input
indicates that the task should wait until the write completes. In the case where one section of
storage must be written before another section is modifled, maximum concurrency can be obtained
in the following way. Once the changes to the first section are made, an update without wait is
requested. Updates to the next section are then computed but not made. Then an update with
wait is performed before actually updating the second section. The second update waits only if the
first write had not completed.

Exceptional conditions:

syscode.invalid _address
is an error signal which indicates that the designated area contains non-existent locations.

57 Amber Kernel Specification

GATE: deactivate _

This gate writes out all modified pages and file maps for a segment, and then removes it from the Active Segment
Table. This is a privileged operation.

deactivate_ (segment)
where:

segment: entry_id input
Designates the segment to be deactivated. No particular access to the segment is required.

Amber Kernel Specification 58

GATE: move data_
This operation transfers data from a location in one domain to another.

move_data (from _domain, from address, to_domain, to_address, data_length)

where:

from_domain: entry_id input
designates the domain from which information is to be read. (If mull, then the current domain is
used.) “Use” access to this domain is required.

from_address: pointer input

gives the address from which information is to be read. “Read” access must be allowed. (That

is, a task executing in the containing domain must be allowed to make a read reference with this
pointet.)

to_domain: entry_id input

designates the domain into which information is to be write. (If null, then the current domain is
used.}) “Use” access to this domain is required.

to_address: pointer input
gives the address to which information is to be written. “Write” access must be allowed.

data_length: segment_size input

gives the number of quarter-words to be moved. The range of addresses to be read or written must
not cross a segment boundary.

Exceptional conditions:

syscode.invalid length
is an error gignal which indicates that the “data length” parameter is out of range, i.e. <0.

syscode.invalid address

is an error signal. It indicates that some address in the either of the ranges |address : address +
read_length) is invalid, or that a range crosses a segment boundary.

59 Amber Kernel Specification

GATE: invoke_domain _

This makes a copy of a template domain which contains the prelinked environment of a task or a task force, and
creates a new domain to hold the copied contents of the template.

Each entry in the template domain is reproduced in the new domain. Names and addresses for the eniries are
preserved; however, the ids of the new entries differ from the originals.

The entries which reference objects with a “template” property are reproduced by creating a copy of the object
with appropriate names and attributes. (Subdomains are never copied, however.) Other entries are reproduced
by creating a link to the object. If the entry was originally a link, then the link is duplicated. If the entry was
an actual object, the link created uses the original domain’s access to it.

A self-referencing link allowing the new domain full access to itself is also created and entered into the domain
under the name “sselfs”.

Access to the copied domain is restricted in order that the operation of a protected type manager not be interfered
with. The copy is created with an access control list that provides only the parent (the domain containing the
copy) with access to the copy, and the modes allowed are limited to that allowed the creator on the template.
A special mechanism prevents this modification of the access control list, and hence unauthorized alteration of
the copy.

As in the create _domain operation, the owner of the new domain is set to the owner of the domain of execution.
The owner can be changed by a subsequent privileged operation.

This gate has not yet been implemented.

id = invoke _domain_ (template, domain, name, volume)

where:

template: entry _id input

designates the template domain for which an instantiation is to be created. “Invoke” access to this
domain is required.

domain: entry_id input
designates the domain in which the copy of the template is to be placed. (If null, then the current
domain is used.) “Modify” access to this domain is required.

name: string input
if non-blank, this gives the name to be given to the new domain. This must not be a duplicate of

any other name in the containing domain. If the name is blank, then the domain has no name and
can only be referenced by id.

volume: unique id input
designates the volume on which the new domain and the copies of its inferior objects are to be

placed. If null, then the default domain volume is taken from the parent domain. If the containing
domain resides on a second class volume, this must be the same volume.

id: entry_id output
is assigned the id of the newly created domain.

Amber Kernel Specification 60

TYPE: task _state_record

This structure defines the state of an executing task. Both hardware and software state information is contained
in the structure. It is used to denote the initial state of a task, as well as the state of a task during execution.

where:

type task state _record = raecord
version: version _id;
proc_status: longint;
user _status: longint;
pc: pointer;
state_size: integer,;
instruction_state: array [1..64] of integer;
registers: array [0..31] of integer;
status: task status;
reason: status code;
wakeup mask: booleen;
priority: task priority,;
allowed processors: processor set;
quantum: system_time;
current domain: entry id,
end;

version
gives the version of the structure being used. The current value is 1. Whenever the structure is
passed as an argument, the version must be set to this value. When the structure is an input
argument, the version and other fields are set; when used as an output argument, only the
version must be set prior to the call.

proc _status
gives the contents of the processor status register.

user status
gives the contents of the user status register.

pe
gives the location of the instruction currently being executed. When the task is in a waiting
state, this gives the address of the instruction at which execution will resume. (That is, the
address of the instruction at the return from the wait call.)

state_size, instruction state

gives hardware dependent information about the state of the current instruction, when its exe-
cution has been interrupted. Only state size words of instruction state are in use.

registers

gives the contents of the 32 registers used by the task. It must always be the case that the stack
pointer {SP) register points to end of a valid stack.

status
gives the scheduler state of the task. The possible values are: task_inactive which means that the
task is not allowed to execute and that its state is stored in the storage system. task_running,
which means that the task is ready to run; task stopped, which means that its execution is
suspended; and task waiting, which means that the task is waiting for an event to occur.

reason

_g'ives a reason why the task is in is current state. If the task is stopped, the reason might be that
it was stopped by another task, or that the system stopped it because of some error condition.
If the status fleld indicates that the task is running, then this field is set to zero.

61

Amber Kernel Specification

wakeup_mask
if cleared, then the task is interrupted when it receives a wakeup; otherwise, delivery of the
interrupt is deferred until this mask is cleared.

priority
This is the priority at which the task runs. It can be in the range of 0 to max_priority.

allowed _processors
This is the set of all processors that this task can run on.

quantum

This is the amount of processor time this task is entitled to before the next task at the same
priority level will be run.

current domain
gives the id of a entry for the “current domain”. That is, when a domain parameter is given as
a null value, then this value is used instead. Normally, this should be the id of a link for the
domain in which the task executes (i.e. the one in which it is catalogued).

Amber Kernel Specification 62

TYPE: task_meters_record

This structure defines the various meters maintained by the kernel for an executing task. This information may
be used to meter the performance of a program, or to perform resource accounting.

where:

type task meters_record = record
cpu_time: system _time;
running time: system time;
presmpts: longint;
waits: lengint;
page_faults: longint;
segment faults: longint;
inst map cache misses: longint;
data map cache misses: longint;
inst_cache _misses: longint;
data_cache _misses: longint;
instructions _executed: longint;
flops executed: longint;
end;

cpu _time
gives the amount of processor time used by the task.

running time
gives the length of time the task has been running. This differs from the cpu time value in the
length of time which the task spent waiting for an available processor when it was ready to run.
It does not include time during which the task was voluntarily waiting for an event, waiting for
page or segment fault processing, or sleeping.

preempts
gives the number of times the task was preempted by higher priority tasks.

waits
gives the number of times the task waited for an event, i.e. the number of wait_ calls.

page_faults
gives the number of pages which were referenced when they were not in main memory.

segment _faults

gives the number of segmentitos which were reference when there were no page tables assigned
to them.

inst_map _cache misses, data_map _cache_misses
give the number of virtual addresses which could not be translated in each map cache.

inst _cache_misses, data_cache_misses
gives the number of memory references which could not be satisfied by each cache.

instructions_executed
gives the number of instructions executed by the task.

flops _executed
gives the number of floating point operations executed by the task.

63 Amber Kernel Specification
GATE: create task_

This creates a new task and initializes its execution in the specified domain. It is assumed that all data and
program segments required by the task have been pre-initialized.

id = create _task (domain, name, seal, modes, state)
where:

domain: entry _id input
designates the domain in which the task is to be created. This becomes the domain of execution of
the task. “Modify” access to this domain is required.

name: string input
if non-blank, this gives the name to be given to the new task. This must not be a duplicate of

any other name in the domain. If the name is blank. then the task has no name and can only be
referenced by id.

seal: entry _id input
if non-null, designates the task as a protected, extended type object whose representation is a task.

Access to unseal the representation is allowed only to this domain (or its agents). No special access
to the sealing domain is required.

modes: access_mode set input
if non-pull, this gives the modes of access to be granted to the containing domain. An access-control

list entry for the domain is created to permit the access; this entry may be modifled or deleted to
change the access, subsequently.

state: task state record input
gives the initial state of the task. Note that state.pc becomes the starting address of the task.

id: entry _id result
is assigned the id of the newly created task.

Exceptional conditions:

syscode.invalid _address
is an error which is signalled if state.p¢ is an invalid address in the virtual memory of the domain.

Amber Kernel Specificaticn 64

GATE: get task meters

This operation returns information about the resources used by the task. If the task is running at the time that

this call is made, then the most recent readings for the task are returned. As the task continues to run, the
values are immediately obsolete.

get _task meters (task, meters)
where:

task: entry_id input

designates the task whose meters are to be read. (If null, the meters of the current task are read.)
“Status” access to the task is required.

meters: task _meters_record reference input-output

This fields of this structure are set to the values of the various meters for the specified task. (See
the definition of the structure.)

65 Amber Kernel Specification

GATE: get_task_state_

This returns the current state of the task. When the task is running at the time this operation is performed, the
state of the task is returned, but is immediately obsolete as the task continues to run.

get _task state_ (task, state)
where:

task: entry id input

designates the task whose state is to be read. (If null, then the state of the current task is obtained.)
“Status” access to the task is required.

state: task state_record reference input-output

The fields of this structure are set on return to give the current state of the task. If state.status =
task_running, then the information is the most recent available.

Amber Kernel Specification 66

GATE: set_task state

This operation sets the state of a task. As the state includes the program counter, machine register values, and
the scheduling status of the task, arbitrary changes in the flow of execution can be effected.

set task state (task, state)
where:

task: entry id input
designates the task whose state is to be altered. (If null, then the current task is used.) “Writestate”
access to the task is required. The task must be stopped or inactive

state: task state record input
gives the new state of the task. In general, the flelds of this structure are interpreted as at the
time of task creation. Here, however, the instruction_state field may have an effect. If non-zero,
execution of the instruction address by “pc” is to be resumed. As a consequence, if the point of
execution of the task is to be changed, not only must the pec be altered, but instruction_state must
be set to zero. Note also that the status field may be set to place the task in any of the states:
suspended, running, or inactive,

Exceptional conditions:

syscode.invalid_address
is an error which is signalled if state.pc designates an invalid address.

syscode.task _not_stopped
is an error that is signalled is state.status is not either task inactive or task_stopped.

67 Amber Kernel Specification

GATE: get_task _scheduling parameters_
This returns the current scheduling parameters for the task.

get _task_scheduling parameters_ (task, priority, processor_selection, processor used,
quantum)

where:

task: entry_id input
designates the task whose scheduling parameters are to be read. (If null, then the current task is
assumed.) “Status” access to the task is required.

priority: task priority output
is assigned the current priority of the task.

processor_selection: processor_set output

is assigned the bit mask indicating which processor the task is allowed to run on. If bit n of the
mask is on, then the task may run on processor n.

processor_used: processor_id output
is assigned the number of the last processor on which the task was rup.

quantum: system _time output
is assigned the quantum runout value for this task.

Amber Kernel Specification 68

GATE: set _task_scheduling_parameters _

This sets the scheduling parameters for a task. This operation can change the “right” of a task to execute on

a processor according to the priority scheduling rules, and such changes are effected immediately. This is a
privileged operation.

set_task scheduling parameters_ (task, priority, processor_selection, quantum)

where:

task: entry_id input
designates the task whose scheduling parameters are to be set. (If null, the link for the current task
is used.) “Control” access is required.

priority: task_priority input
gives the priority for the task.

processor_selection: processor_set input

gives a list of processors on which the task is allowed to run. It is given as a bit mask; if bit n is
on, then the task can run on processor n.

quantum: system _time input
gives the run quantum for the task. Every quantum nanoseconds of cpu time, the task will relinquish
the processor to another task with the same priority.

69 Amber Kernel Specification
GATE: activate _task _
This allows the task to execute. The task is made runnable, and its execution initialized from the stored task
state. While the task remains active, the stored state is invalid; should the system halt before the task is
deactivated then the state is said to be inconsistent.

activate _task (task)
where:

task: entry id input

designates the task to be activated. (If null, then the current task is assumed.) “Control” access is
required.

Amber Kernel Specification 70

GATE: deactivate task_
This prevents a task from executing. This task is halted, and its state stored in permanent storage.
deactivate task (task)

where:

task: entry id input

designates the task to be deactivated. (If null, then the current task is assumed.) “Control” access
is required,

71 Amber Kernel Specification

GATE: suspend _task

This operation halts execution of a task. The state of this task becomes task stopped.
suspend task_(task)

where:

task: entry id input
designates the task to be halted. (If null, the current task is implied.) “Control” access is required.

Amber Kernel Specification 72

GATE: start_task_

This operation allows a task to execute. It is used to resume execution of a task which is suspended for some
reason, and changes the state of the task from suspended, or waiting to running. No error occurs if the task is
already in the running state.

start task (task)

where:

task: entry _id input
designates the task to be started. “Control” access to the task is required.

73 Amber Kernel Specification

GATE: kill _task
This destroys a task.
kill task_(task)
where:
task: entry id input

designates the task to be destroyed. (If null, then the current task is used, i.e., the current task is
killing itself.) The link must permit “control” access to the task.

Amber Kernel Specification 74

GATE: monitor_task _

This allows a task with appropriate access to monitor state changes in another task. The mnaitoring task
provides a message channel to which the kernel will send messages describing the events. During the activation
of a task, there can be only one channel at a time from which a task can be monitored. The monitor function
cannot be released, except by deletion of the channel, though the right to monitor the task can be passed by

granting access to the monitor channel.
The following events can be monitored by use of this mechanism.

1. Hard-traps and interrupts. The message contains the trap or interrupt information.

2. Creation of tasks. Whenever the monitored task creates another, a message is sent containing a full-
access link for the created task.

This is intended to allow a “superior” task to create and manipulate “captive” inferiors.

The message channel mechanism, including this gate, has not yet been implemented.
monitor task (task, monitor channel)

where:

task: entry _id input
designates the task to be monitored. “Control” access to the task is required.

moanitor_channel: entry id input
gives the channel over which the monitor information is transmitted. Information is transmitted
as long as the channel is grabbed by some task; the alternate node of the channel is marked as
grabbed by the kernel. The current task must have the right to “transmit” on the channel.

75 Amber Kernel Specification

GATE: wakeup _

This sends a wakeup to the task. This interrupt is passed to the user through the soft trap mechanism imple-
mented by the hardware. If a task receives a wakeup while it is running the user interrupt will occur immediately.
If the task is blocked the task will be scheduled to run and will receive the interrupt as soon as it starts running.
Actually, the interrupt will be delayed if the wakeup mask is set. When the mask is reset any pending wakeup
will cause an immediate user interrupt.

wakeup_ (task, wakeup index)
where:

task: entry_id input
specifies the task which is to be sent the wakeup. (If null, then the current task is assumed.)
“Control” access to this task is required.

wakeup _index: wakeup id input
gives the number of the wakeup to be sent to the task. When the task is interrupted, the pending
wakeup set is delivered to as an interrupt parameter. The bit corresponding to this index, along
with any other wakeups not yet delivered, will be set in the mask.

Amber Kernel Specification 76

GATE: block _

This suspends the current task until some wakeup is sent to the task. Execution of the task resumes when a
wakeup is received, when execution is explicitly restarted by another task (with start_task_), or a maximum
wait time is exceeded. The time out is provided for reliability reasons, and ensures that execution is never
permanently halted because of a failure of the event to occur. The wakeup mask is reset by this call. If the task
is resumed because of a wakeup the accompanying user interrupt will occur before the block subroutine returns.

block_ (time_out)

where:

time out: system_time input
gives the time until which the task is to wait. This is an absolute time.

77 Amber Kernel Specification

GATE: set_wakeup_mask

This operation updates the task's wakeup mask. While the mask is set (true), all wakeups are deferred. If
this call changed the mask from true to false and the task has wakeups pending they will be processed (by
interrupting the task) before this subroutine returns.

set_wakeup mask_(new_mask, old_mask)
where:

new_mask: boolean input
gives the new value for the task’s wakeup mask.

old _mask: boolean output
is assigned the mask value previously in effect.

Amber Kernel Specification 78

GATE: declare broadcast _event _

This operation deflnes a synchronization event which a task is interested in monitoring. When the event is
broadcast by some task, the current task will receive a wakeup. (Note that this operation need be performed by
the receiver only, not the sender.) The wakeup index is defined by this call.

No error occurs if the task has already declared an event with the specified name (object, event-id). Consequently,
this operation may be used to change the wakeup index of a previously defined event.

declare_broadcast event_ (object, event, wakeup index)

where:

object: entry _id input
specifies the object with which the event is associated. If this value is null, then the object is taken
to be the task itself. The link must allow “listen” access to this object.

event: event _id input
gives the user-assigned id which designates the event.

wakeup _index: wakeup id input
identifies the wakeup to be sent to the task when the event is broadcast.

Exceptional conditions:

syscode.event _not _declared

is reported if the kernel is unable to enter a declaration of the event for the task. Each installation

may place a limit on the number of outstanding events which may be declared by a single task or by
all tasks as a group.

79 Amber Kernel Specification

GATE: broadcast _

This indicates that a broadcase event has occurred. Any task which has declared its interest in the event is sent
a wakeup.

broadcast (object, event)
where:
object: entry _id input
specifies the object with which the event is associated. If this value is null, then the object is taken

to be the task itself. The link must allow “broadcast” access to the object.

event: event_id input
gives the user defined id of the event.

Amber Kernel Specification 80

GATE: delete broadcast _event _

This deletes a declaration of an event. Its effect is to remove the event from the list of events being monitored
by the kernel on behalf of the task. Subsequently, if the event is signalled, no wakeup is sent to the task. No
error occurs if the task has not declared the event.

delete broadcast event (object, svent)
where:
object: entry id input
specifies the object which names the event. If this value is null, then the object is taken to be the

task itself. No special access is required to the object.

event: event id input
gives the user defined id naming the event.

81 Amber Kernel Specification
GATE: set _alarm _

This causes a wakeup to be sent to the task at some specified time in the future. At any one time, there can be
only one alarm for a task. Thus, this operation overrides any previous setting for the same task. If alarms are
required at many different times, the program must multiplex the alarm itself.

If the timer _setting is After_Time this effectively shuts off the alarm.
set_alarm_ (timer setting, wakeup index)
where:

timer_setting: system_time input

gives the time at which the interrupt is to occur. This value is an absolute time. If a time in the
past is specified, an interrupt occurs immediately.

wakeup_index: wakeup_id input
designates the wakeup to be sent to the task.

Amber Kernel Specification 82

GATE: set_cpu_alarm

This causes a wakeup to be sent to the task after the task has executed for some amount of time. The cpu timer
measures only time the processor spent executing the task itself, not any system overhead such as interrupt
handling. At any one time, there can be only one cpu time alarm for a task. Thus, this operation overrides any

previous setting for the same task. If alarms are required at many different times, the program must multiplex
the timer itself.

If the cpu_timer setting is After Time the alarm will be shut off.
sst_cpu_alarn (cpu_timer metting, wakeup index)
where:

cpu_timer _setting: system time input

gives the time at which the interrupt is to occur. This value is specified as elasped cpu time since
task creation. If the task has already run for the specified time, an interrupt occurs immediately.

wakeup index: wakeup 1id input
designates the wakeup to be sent when the alarm goes off.

83 Amber Kerne] Specification

GATE: set_trap_handlers_

This is used to set handlers for traps which are handled by the user. These traps include arithmetic errors,
wakeup handlers, and kernel error handlers. At the present, this gate is implemented in a fashkion specific to the
S-1 Mark Ila architecture. This will be changed at some future point.

set trap handlers (soft_traps, trpslf_traps)

where:

soft traps: fault_vector input
is an array of entry variables specifying the procedures to be called for each soft trap. The first
element in the trap will be invoked when soft trap 0 occurs, the second element will be invoked
when soft trap 1 occurs and so on. See the S-1 Uniprocessor Architecture Manual for a list of
soft traps. In addition, Amber defines soft traps 16 through 20 as an error signal trap for errors
signalled in the kernel, bad data passed into the kernel, illegal instruction, debugging traps, and
wakeups, respectively.

trpslf _traps: fault_vector input

is an array of entry variables specifying the procedures to be invoked when the corresponding
TRPSLF instruction is executed.

Amber Kernel Specification 84

GATE: get _trap handlers

This is used to retrieve the current vector of handlers for traps which were set by the most recent call to
set _trap_handlers _

set trap handlers (soft traps, trpslf_traps)
where:

soft _traps: fault_vector reference output

The elements of this array will be filled in with entry variables representing the current handlers
for soft traps.

trpslf_traps: fault_vector reference output
The elements of this array will be filled in with entry variables representing the procedures to be
invoked when the corresponding TRPSLF instruction is executed.

85 Amber Kernel Specification

GATE: add terminal _
This configures a terminal on the system. This is a privileged operation.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

add terminal (terminal, owner, wakeup)
where:

terminal: terminal_id input
designates the identifier of the terminal to be configured.

owner: entry id input

designates the owner of the terminal. This task will be sent a wakeup when input is received on
this terminal. If this is null, the current task will be made the owner.

wakeup: wakeup id input
specifies which wakeup will be sent when the terminal receives input.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifier attached to the system.

Amber Kernel Specification 86

GATE: attach_terminal
This attaches a terminal to a task. This is a privileged operation.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

attach terminal (terminal, owner)
where:

terminal: terminal id input
designates the identifier of the terminal to be attached.

owner: entry id input
designates the owner of the terminal. This task will be notified when input is received on this

terminal, and can therefore block while waiting for input. If this is null, the current task will be
made the owner.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifier attached to the system.

syserror.inconsistent io _operation

The specified terminal may not be attached because either it is not configured or it is already attached
to another task.

87 Amber Kernel Specification
GATE: detach terminal_
This detaches a terminal from a task and returns it to another owner. This is a privileged operation.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

detach terminel (terminal, owner, wakeup)

where:

terminal: terminal_id input
designates the identifier of the terminal to be detached.

owner: entry _id input

designates the new owner of the terminal. This task will be sent a wakeup when input is received
on this terminal. If this is null, the current task will be made the owner.

wakeup: wakenp_id input
specifies which wakeup will be sent when the terminal receives input.

Exceptional conditions:

syserror.no _device
There is no physical device with the requested terminal identifier attached to the system.

syserror.inconsistent _io_operation

The specified terminal may not be detached because either it is not configured or it is not attached to
a task.

Amber Kernel Specification 88

GATE: order_terminal

This sets terminal characteristics.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

order terminal (terminal, operation, data)

where:

terminal: terminal _id input
designates the identifier of the affected terminal.

operation: string input
gpecifies the operation to be performed. The supported operations are described below.

data: pointer input
points to operation-specific data.

The follwowing operations are supported:

set_break table

sets the break table to determine which characters may be echoed by the kernel without notifying the
owner during echo negotiation. In this case, data points to a 256 element array of boolean values. An
element is set to false if the kernel may echo the character with that ascii value, and true if the task
should be notified and the character not echoed.

set wakeup _id
Set the wakeup to be sent when the terminal interrupts. Data points to a wakeup id.

start _echo _negotiation

specifies that the kernel should echo characters on input until a character is entered which is in the

break table, or until there is output pending. The daemon makes no guarantees that anything will be
echoed. Data is ignored.

stop_echo negotiation
The kernel will stop ever echoing input. Data is ignored.

Exceptional conditions:

syserror.unknown order operation
The requested operation is not supported for terminals.

syserror.no_device
There is no physical device with the requested terminal identifier attached to the system.

syserror.inconsistent jo_operation

The specified terminal may not be operated upon because it is not configured or it is not owned by
this task.

89 Amber Kernel Specification

GATE: terminal _read_

This is used to read characters from a terminal. If there is no input available, this gate will block waiting for an
available character.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

terminal read (terminal, buffer, length, echoed)

where:

terminal: terminal_id input
designates the identifier of the terminal to be read from.

buffer: string reference output
is a string buffer where all available input characters will be placed.

length: unsigned integer output
is set to the number of characters placed in buffer.

echoed: unsigned integer output

is set to the number of characters placed in buffer which were echoed by the kernel. If echo
negotiation is not enabled, this will always be zero.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifler attached to the system.

syserror.inconsistent io_operation
The specified terminal may not be read because it is not configured.

Amber Kernel Specification 90

GATE: terminal _read char_

This is used to read a single character from a terminal. If there is no input available, this gate will block waiting
for an available character.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

char = terminal read char (terminal)
where:

terminal: terminal_id input
designates the identifier of the terminal to be read from.

char: character cutput
is the next available character from the terminal.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifier attached to the system.

syserror.inconsistent io_operation
The specifled terminal may not be read because it is not configured.

91 Amber Kernel Specification

GATE: terminal _input_available
This is used to determine if any input has been typed on a terminal.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

pending input = terminal input _available_ (terminal)
where:

terminal: terminal_id input
is the identifier of the terminal to be interrogated about pending input.

pending_input: boolean output
is true if there is at least one character available to be read from the terminal and false if there is

not.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifler attached to the system.

syserror.inconsistent _io _operation
The specifled terminal may not be interrogated because it is not configured.

Amber Kernel Specification 02

GATE: terminal_write
This is used to write characters to a terminal.

This gate, like the rest of the terminal interface, is a temporary measure and will be removed once support for
message channels and special segments has been implemented.

terninal write (terminal, buffer. wait)

where:

terminal: terminal_id input
designates the identifier of the terminal to be written to.

buffer: string input
is a string to be output to the terminal.

wait: boolean input

If this flag is set, the gate will not return until the characters have been printed on the terminal. If
it is not set, it may return after queueing an output request but before the request is processed.

Exceptional conditions:

syserror.no_device
There is no physical device with the requested terminal identifier attached to the system.

syserror.inconsistent _io _operation
The specified terminal may not be written because it is not configured.

03 Amber Kernel Specification

GATE: create _channel
This operation creates the user and server nodes of a message channel. Each exists as a separate object.
The message channel mechanism, including this gate, has not yet been implemented.

create channel (domain, user _name, user_seal, user modes, user_node_id, server_nanme,
server seal, server modes, server node_id)

where:

domain: entry_id input
designates the domain in which the objects are to be created. “Modify” access to the domain is
required.

user name: string input
if non-blank, this gives the name to be given to the new user node object. This must not be a
duplicate of any other name in the domain. If the name is blank, then the user node object has no
name and can only be referenced by id.

user seal: entry id input
if non-null, designates the user node as a protected, extended type object whose representation is
a channel node. Access to unseal the representation is allowed only to this domain (or its agents).
No special access is required to the sealing domain.

user modes: access mode _set input
if non-null, this gives the modes of access to the user node object to be granted to the containing

domain. An access-control list entry for the domain is created to permit the access; this entry may
be modified or deleted to change the access, subsequently.

user node id: entry id output
is assigned the id of the link for the newly created user node.

server name: string input
if non-blank, this gives the name to be given to the new server node object. This must not be a

duplicate of any other name in the domain. If the name is blank, then the server node object has
no name and can only be referenced by id.

server seal: entry id input
if non-pull, designates the user node as a protected, extended type object whose representation is
a channel node. Access to unseal the representation is allowed only to this domain {or its agents).
No special access is required to the sealing domain.

server modes: access mode set input
if non-null. this gives the modes of access to the server node object to be granted to the containing

domain. An access-control list entry for the domain i3 created to permit the access; this entry may
be modified or deleted to change the access. subsequently.

server node id: entry id output
is assigned the id of the link for the newly created server node.

Amber Kernel Specification 94

GATE: connect _

This is used to establish a connection between the user and server tasks of a message channel. In order for a
connection to be completed, tasks must obtain control of the respective nodes via this operation.

If some task has control of the channel, the current task is returned a warning code indicating the condition. In
order to forcibly take control of the channel, the current task must use the disconnect operation.

The message channel mechanism, including this gate, has not yet been implemented.

connect_ (channel, open_wakeup, disconnect_wakeup, incoming_packet _wakeup, code)

where:

channel: entry _id input

designates the node which the task is to take control of “Transmit” access to the channel node is
required.

open_wakeup: wakeup id input
designates the wakeup which is sent when a connection is completed. Since this routine connects

this node to this task, the interrupt will occur as soon as the other node is connected by some task.
If it is already connected, the wakeup is sent immediately.

disconnect wakeup: wakeup id input
designates the wakeup which is sent when the connection is broken. There are four cases: the
channel is explicitly disconnected (before or after a connection is completed), one of the nodes of

the channel is deleted, one of the controlling tasks is deleted, or the access of one of the controlling
tasks is revoked.

incoming packet wakeup: wakeup_id input

designates the wakeup which is sent when a packet is sent to the current task before it has asked
to receive a packet.

code: status code output

is assigned a system status code indicating the success or failure of the operation. If set to zero,
then the task successfully obtained control of the channel.

Exceptional conditions:

code = syscode.channel_busy
is a warning code which indicates that another task had control of the channel.

code = syscode.cannot_connect _channel
is an error which signifies that the connection could not be created because of internal kernel limitations.

95 Amber Kernel Specification

GATE: disconnect _

This resets a channel. Any tasks that have control of a node of a channel (whether or not a connection has
been completed) are sent wakeups to notify them of the disconnection. This operation may be performed by any
task which has access to use the channel, and may therefore be used to “takeover” the channel if necessary. All
outstanding I/O operations are discarded.

The message channel mechanism, including this gate, has not yet been implemented.
disconnect _ (channel)
where:

channel: entry id input

designates the channel for which control is to be released. “Transmit” access to the channel is
required.

Amber Kernel Specification 96

GATE: identify caller_

This returns the identity of the task with which the current task is communicating. A connection must exist for
a value to be returned.

The message channel mechanism, including this gate, has not yet been implemented.
identify caller (channel, caller id)
where:

channel: entry id input

designates the node of the channel held by the current task. The identify of the task holding the
remote node is returned. The current task must have control of the channel.

caller_id: entry id output

is assigned an identifier for the task controlling the remote node of the channel. This a null-access,
null-name link for the task. If no connection exists. then null id is returned.

97 Amber Kernel Specification
GATE: send _

This queues a packet for delivery to the receiving task. If the node specified is the user node, then the packet is
sent to the server, and vice versa.

The data in the packet is not actually transmitted until the receiving task explicitly reads the incoming data.

At that time, the data is moved directly from the sending to receiving address spaces, and the kernel will issue
a wakeup to the sending task.

If the receiving task has not performed a receive_ operation prior to the send_, then a wakeup is sent to the
receiving task (when requested) to notify it that a packet is available.

Execution of the task proceeds asynchronously with completion of the transaction. On any one channel, there
may be at most one incomplete send operation.

The message channel mechanism, including this gate, has not yet heen implemented.

send _ (node, packet ptr, packet length, wakeup index)

where:

node: entry _id input

designates the channel over which the packet is to be transmitted. The task must have control of
the channel.

packet ptr: pointer input
gives the address of the start of the buffer contairing the message to be sent.

packet length: segment size input
gives the size of the message in quarter-words. This value must be greater than zero.

wakeup index: wakeup id input

designates the wakeup to be sent to the task when the data has been moved out of the buffer or
when the receiving task flnshes incoming packets

Exceptional conditions:

syscode.too_many transactions
is an error signal which indicates that the limit on outstanding send tramsactions has been exceeded.

syscode.zero length_packet
is an error which is signalled if packet is of zerc or negative length

Amber Kernel Specification 08

GATE: receive

This operation reads the packet from a message channel. If the message node specified is the server node, then
packets from the user are read, and vice versa.

The transmission of information into the buffer does not occur until a packet from the sender is available. (The
send may occur before or after the receive operation.) Execution of the receiving task continues asynchronously,
but when the transfer is completed, an wakeup is issued by the kernel.

On any one channel, at most two receive transactions may be outstanding.
The message channel mechanism, including this gate, has not yet been implemented.

receive_ (node, buffer ptr, buffer length, packet length, wakeup index)

where:

node: entry_id input
designates the channel from which message data are to be read. The task must have previously
grabbed this channel.

buffer_ptr: pointer input
gives the address of a buffer into which the message data are to be read. The buffer should not be
accessed until completion of the transaction is signalled.

buffer length: segment size input

gives the length of the buffer in quarter-words. If the actual length of the packet to be read is less
than the size of the buffer, the buffer is incompletely filled. If the packet is larger, then trailing
bytes of the packet are discarded.

packet length: segment size reference output

is assigned the length of the packet read. It is set to O on return if the packet has not yet arrived,
and its address is saved so that it may be updated when the packet arrives.

wakeup index: wakeup id input
designates the wakeup to be issued when data has been moved into the buffer.

Exceptional conditions:

syscode.too_many transactions
is an error signal which indicates that the limit on outstanding send transactions has been exceeded.

99 Amber Kernel Specification

GATE: receive packet _info_

This returns information about the next available incoming packet. The information is available from the time
the remote sender issues a send request until the packet is read. As a result, this operation should preceed the
operation to receive the packet. If this call is issued in advance of a send making a packet available, a status
code is returned which indicates that no packet is available.

This operation serves two functions. First, it gives the receiver the length of the incoming packet in advance of

reading the actual data. This allows a buffer of appropriate size to be allocated. Second, it can be used to test
when a packet is available,

The message channel mechanism, including this gate, has not yet been implemented.

receive packet info (node, packet length, code)

where:

node: entry id input

designates the channel from which the status information is to be returned. The task must have
previously grabbed this channel.

packet length: segment size output

is assigned the length of the packet which is now available. If there is no packet available, 0 is
returned.

code: status code output

i3 assigned a system status code indicating the presence of a packet. If set to zero, a packet is
available; other codes as enumerated below indicate nther conditions.

Exceptional conditions:

code = syscode.channel empty
is a warning code which indicates that the channel is empty.

Amber Kernel Specification 100

GATE: flush channel
This operation discards packets sent to, but not received by the current task. The sending task is sent an wakeup
to notify it that the send buffer is no longer needed. No error occurs if the channel is empty. This may be used
by a receiver to delete incomming packets.
The message channel mechanism, including this gate, has not yet been implemented.

flush channel (channel)

where:

channel: entry id input
identifies the channel to be flushed. The task must have previously grabbed this channel.

101 Amber Kernel Specification
GATE: create_dummy object

This creates a new dummy object. There are no special kernel operations deflned for dummy objects; they are

used merely as place holders to build user defined objects. As with all other objects, they have a property list
which may be used to hold relevant icformation.

id = create_dummy object_ (domain, name, seal, modes)

where:

domain: entry_id input
designates the domain in which the dummy object is to be created. “Modify” access to this domain
is required.

name: string input
if non-blank, this gives the name to be given to the new dummy object. This must not be a duplicate

of any other name in the domain. If the name is blank, then the dummy object has no name and
can only be referenced by id.

seal: entry id input

if non-null, designates the object as a protected, extended type object whose representation is a
dummy object. Access to unseal the representation is allowed only to this domain (or its agents).
No special access to the sealing domain.

modes: access_mode_set input

if non-null, this gives the modes of access to be granted to the containing domain. An access-control
list entry for the domain is created to permit the access; this entry may be modified or deleted to
change the access, subsequently.

id: entry _id result
is assigned the id of the newly created dummy object.

Amber Kernel Specification 102

GATE: set _switch _

This sets various binary switches associated with the entry.
set switch_(object, switch name, value)

where:

object: entry_id input
designates the object for which a switch is to be set. The operation is allowed if “put” access to
the object is permitted.

switch_name: string input
is the name of the switch to be set. Currently, this must be one of “check_quota”, “damaged”,
“trickle”, or “volume dump”.

value: boolean input
is the new value of the switch.

Exceptional conditions:

syscode.invalid _switch_name
This error is signalled when the switch_name parameter does not contain one of the valid names
mentioned above.

syscode.not _an _object
This error occurs when the object named by the object parameter is not either a segment or a domain.

103 Amber Kernel Specification

GATE: object status.
This returns the status information kept for an object.

Where an id is returned as the value of certain fields, such as the creator, it is the identifier of a link entered into
the current domain for the express purpose of identifying the referenced object. The link allows no access to the
object, and has a null name. The caller must remember to delete the link when finished with the information.

object status (object, status)
where:

object: entry id input
designates the object for which status information is to be returned. The operation is allowed if
“get” access to the object is permitted.

status: object status type reference input-output
is a structure whose flelds are assigned the status information. A version field must be set on input
and specifies the version of the structure to be used follows:

type object etatus type = record
version: version id;
uid: anique id;
class: object _class;
sesl: entry id;
time created: system time;
creator: entry id,
time entry modified: system time;
time entry dumped: system tinme;
volume: unique id;
time used: system time;
time modified: system time;
time dumped: system_time,
records used: system time;
usage count unsigned integer;
damaged flag: boolean;
max length: segment size,
default domain volume: unique id,;
default volume: unique id;
owner entry id;
end;

where:

status.version

designates the version of the structure being used. Currently, only one version is sup-
ported. and the field should be set to 1 prior to the call.

status.uid
gives the unique identifler of the object.

status.class

gives the primitive class of the object. This fleld also determines which other fields are
used,

status.seal

identifies the type of an extended type object. The class field gives the kind of repre-
sentation of the object. If null, then this is not an extended typed object.

status.time created

Amber Kernel Specification 104

gives the time at which the object was created.

status.creator

gives the owner of the domain of the task which created the object. If the access identifier
has been subsequently deleted, then a pull id is returned.

status.time_entry modified
gives the last time that the domain information for the object was changed.

status.time_entry dumped
gives the last time that the status information was dumped by the backup system.

The above fields are defined for all classes of objects. The fields below are only defined for segments and domains.

status.volume
identifies the volume on which the object resides.

status.time _used
gives the last time at which the contents of the segment or domain were accessed.

status.time modified
gives the last time at which the segment or domain subtree was last modified.

status.time dumped

gives the last time that the contents of the segment or domain were dumped by the
backup system.

status.records used
gives the number of records of storage used by the object.

status.usage _count

gives the number of times the contents of the segment or domain were accessed. This
counts the number of times a link for the object was obtained — with sufficient access
to use the contents of the object.

status.damaged flag
if true, then the storage system found the object in an inconsistent state.

status.max_length

gives the maximum length of the contents of the object in quarter-words. The value is
enforced to the next highest page boundary.

The following flelds are defined only for domain class objects.

status.default domain volume
identifies the volume on which inferior domains will be created by default.

status.default _volume
identifies the volume on which inferior, non-domain branches will be created by default.

status.owner
identifies the owner of the domain.

105 Amber Kernel Specification

GATE: put property _

This operation sets the value of a property on the property list of an object. If there is already a property with
the same name, the value is changed; otherwise a new property is created and initialized.

put_property (object, name, value)
where:
object: entry _id input
designates the object whose property list is to be changed. The operation is allowed if “put” access

to the object is allowed.

name: string input
gives the name of the property to be set. (This must conform to the rules for object names.)

value: string input
gives the new value for the property.

Amber Kernel Specification 106

GATE: get property

This operation obtains the value of a property on the property list of an object. If there exists a property with
the specified name, then its value is returned; if there is no such property, then it is assumed to have a value of

un

get_property_ (object, name, value, value_length)

where:

object: entry _id input
designates the object whose property list is to be examined. The operation is allowed if “get” access
to the object is permitted.

pame: string input

gives the name of the property to be obtained. This name must conform to the rules for object
names.

value: string output reference

is assigned the current value of the property. If the maximum length of the variable is less than the
length of the value of the property, then the return value is truncated.

value length: char index output
is set to the length of the value. Zero is used for the length of an undefined property.

Exceptional conditions:

length (value) < value length

occurs when the string allocated to hold the value of the property is too short. The value of the
property is truncated.

107 Amber Kernel Specification
GATE: put property test

This updates the value of a property conditional on its present value. The operation is indivisible with respect
to other property list operations to allow manipulation of “lock” values. (As with the get property operation,
if the property is not already defined, its current value is taken as the null string.)

flag = put _property test (object, name, test value, new value)

where:

object: entry id input
designates the object whose property list is to be updated. The operation is allowed if both “get”
and “put” access to the object is permitted.

name: string input

gives the name of the property to be updated. The name must conform to the rules for object
names.

test value: string input
gives the value to be compared with the present value of the property. The value is altered only if
this matches the present value; note that “” matches an undefined property.

new value: string input
gives the value to be assigned to the property.

flag: boolean resnlt
i set true if test value equals the current value of the string; false, otherwise.

Amber Kernel Specification 108

GATE: delete property _

This removes a property from the property list of an object. No error occurs if no property with the specified
name exists.

delete property (object, name)
where:
object. entry id input
designates the object whose property list is to be modified. The operation is allowed if “put” access

to the object is allowed.

name: string input
gives the name of the property to be deleted.

109 Amber Kernel Specification

GATE: delete property test

This deletes a property conditional on its present value. The operation is indivisible with respect to other
property list operations.

flag = delete_property test (odbject, name, test_value)

where:

object: entry id input

designates the object whose property list is to be updated. The operation is allowed if both “get”
and “put” access to the object is permitted.

name: string input

gives the name of the property to be updated. The name must conform to the rules for object
names.

test value: string input
gives the value to be compared with the present value of the property. The value is altered only if
this matches the present value; note that “” matches an undefined property.

flag: boolean result
is set true if test _value equals the current value of the string; false, otherwise.

Amber Kernel Specification 110

GATE: test property

This operation tests for the presence of a particular property on the property list of an object.
flag = test property (object, name, value_length)

where:

object: entry_id input

designates the object whose names are to be changed. The operation is allowed if “get” access to
the object is allowed.

name: string input
gives the name of the property whose presence is to be tested

value length: char_index output

is set to the length of the value of the tested property. Zero is returned for the length of an undefined
propert.

flag: boolean result
is set to one if there is a property with the specified name; false, otherwise.

111 Amber Kernel Specification

GATE: list properties _

This operation lists the properties of an object. The names and lengths of the property values are returned; the
values themselves must be obtained by individual calls.

liet properties _ (object, property list ptr, max properties)
where:

object: entry id input
designates the object whose names are to be changed. The operation is allowed if “get™ access to
the object is allowed.

property list ptr: pointer (property _list) input
gives the address of an area into which a structure giving the list of properties will be placed. The
format of the structure appears below.

type property list = record

version: version_id;

n_properties: unsigned integer;

list: array [1..n properties] of record
name: object name;
property value length: unsigned integer,
end;

end,

where:

property list.version
gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

property list.n properties
gives the number of properties which are defined.

property list.name
gives the name of a property.

property list.property value length
gives the current length of the string valne of the property.

max _properties: unsigned integer input
gives the maximum number of properties that may be returned.

Exceptional conditions:
property list.n properties > max properties

occurs when there are more properties than have becn allowed for. Only the first max_properties
property entries are filled in.

Amber Kernel Specification 112

GATE: set_default_volume _

This sets the default volume on which segment objects in a specified domain are to be placed. When a domain
is initially created, the default is set to the volume on which the domain, itself, resides.

The quota mechanism, including this gate, has not yet been implemented. The entire hierarchy is constrained
to fit on a single volume.

set default volume (domain, volume)
where:

domain: entry id input

designates the domain for which the default is to be set. The default applies to branch objects
created within this domain. “Modify” access to this domain is required.

volume: unique id input

identifies the volume to be used. No special access is required. If the domain resides on a second
class volume, then this must be the same volume.

113 Amber Kernel Specification

GATE: set _default _volume _domains _

This sets the default volume on which sub-domain objects are to be placed. When a domain is initially created,
the default is set to the volume on which the domain, itself, resides.

The quota mechanism, including this gate, has not yet been implemented. The entire hierarchy is constrained
to fit on a single volume.

set default volume domains (domain, volume)
where:
domain: entry id input
designates the domain for which the default is to be set. The default applies to domain objects

created within this domain. “Modify” access to this domain is required.

volume: unique_id input
identifies the volume to be used. No special access 1s required. If the domain resides on a second
class volume, then this must be the same volume.

Amber Kernel Specification 114

GATE: create _quota_account _
This creates a quota account for a volume, or alters the parameters of an existing account.

In effect, this enables the creation of domains and segments on that volume within the specified domain subtree;
in addition, it places an absolute limit on the amount of storage on the volume which can be used. If the account
already exists, the effect of this operation is to alter the limit.

The velume is identified by a unique identifier, generated and cataloged external to the normal kernel mechanisms.
Thus, use of this operation must be made privileged in order to avoid unauthorized use of storage on the volume.

The quota mechanism, including this gate, has not yet beeu implemented.

create_quota account (domain, volume, quota)
where:

domain: entry _id input
designates the top of the domain subtree to which the quota account applies. The subtree includes
all inferior domains that do not have their own separate account; it does not include this domain
itself, its usage is billed to a higher account. No special access is required to this domain.

volume: unigue id input
designates the volume on which the quota may be used.

quota: unsigned integer input
gives the maximum number of physical storage records which can be by objects in the subtree which
reside on the volume, If the account already exists, this gives the new maximum. It need not be
greater or less that the existing maximum or the number of records currently being used.

115 Amber Kernel Specification
GATE: delete_quota account

This deletes a quota account. In effect, it prohibits the creation of domains and segments on that volume
within the specified domain subtree (unless there is a quota account for the same volume higher in the domain
hierarchy.) This operation is not allowed if there is a non-zero usage on the account (i.e. if there still exist any
objects residing on the volume).

The volume is identified by a unique identifier, generated and cataloged external to the normal kernel mechanisms.
Thus, use of this operation must be made privileged in order to avoid unauthorized use of storage on the volume,

The quota mechanism, including this gate, has not yet been implemented.
delete gquota account (domain, volume)
where:
domain: entry id input
designates the top of the domain subtree to which the quota account applies. No special access is
required to this domain.
volume: unique _id input
designates the volume on which the quota may be used. “Allocate” access for this volume is
required.

Exceptional conditions:

syscode.volume _in use

is an error signal which occurs when an attempt is made to delete the allocation, and there remain
objects (even with zero quota usage) residing on the volume.

Amber Kernel Specification 116

GATE: set_quota limit_

This sets a optional limit on the use of storage on a volume. The total number of records of physical storage
used by objects within the domain (or its sub-domains) cannot exceed this limit. (Note that this limit does not
apply to sub-domains that have a separate quota account for the volume.} If a sub-domain has its own quota
limit, consumption of storage by objects within the sub-domain is checked against its own limit and that of any
superiors.

In contrast to the creation of a quota account which is a privileged system function, this operation may be
performed by an unprivileged user to control use of the physical storage by objects for which he is responsible.

The quota mechanism, including this gate, has not yet been implemented.
set quota limit (domein, volume, quota)
where:
domain: entry id input
designates the domain on which the quota is to be applied. “Modify” access to this domain is

required.

volume: unique _id input
designates the volume for which the quota limit applies. No special access is required to this
volume; however, a quota account for the volume must have been created in the domain or one of
its superiors.

qucta: integer input
is the quota value to set. A value of -1 denotes no limitation.

LExceptional conditions:

syscode.no_quota account
is an error signal which occurs if there is no quota account for the volume which applies to the subtree
containing the domain.

117 Amber Kernel Specification

GATE: list_quota_

This is an enquiry operation that provides quota information about a domain. For each volume, the number of
records charged against the domain’s quota, and the quota allocation and authorization limits are returned.

The quota mechanism, including this gate, has not yet been implemented.

list _quota (domain, quota list ptr, max_volumes)

where:
domain: entry _id input
designates the domain whose quota information is to be returned. “List” access to the domain is
required.
quota list_ptr: peinter (quota _list} input
gives the address of an area into which a structure giving the list of per-volume quota information
can be place. The format of this structure is as follows.
type quota list = record
version: version_id,
n_volumas: unsigned integer;
info: array [1..a volumes] of record
volume: unique_id,;
quota account limit: integer;
quota limit: integer;
usage: unsigned integer;
time record product: longint;
end;
end;
where:

quota_list.version
gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

quota_list.n volumes
is the number of volumes for which quota information is kept. This includes volumes for
which this domain has an allocation. and volumes for which containing domains have
allocations.

quota_list.volume

gives the id of the volume for which the quota information applies. This link serves only
to identify the volume, and grants no access to it

quota list.quota account_limit
gives the limit for a quota account associated with this domain. If there is no account,
then a value of -1 is returned. (There must exist a quota account in a superior domain.)

quota _list.quota limit

gives the number of records allocated for use in this domain. If there is no limit, a value
of -1 iz assigned.

quota_list.usage

gives the number of records on the volume charged to this domain. The value includes
the records of segments and domains in the current domain, as well as the individual
usages of the subdomains.

quota_list.time record_product
gives the integral of record usage over time charged against this domain.

Amber Kernel Specification 118

max _volumes: integer input
gives the maximum number of volume quota information entries that may be returned.

Exceptional conditions:
quota_list.n_volumes > max volumes

occurs if there are more volume entries than there is space allocated for. The available entries are filled
in.

119 Amber Kernel Specification

GATE: salvage _domain

This invokes the domain salvager to check the integrity of an Amber domain, rebuilding it if necessary. This
caa optionally be used to reclaim lost space in the directory area and to delete connection failures. This is a
privileged operation.

severity = salvage domain (domain, optioms, copy ptr, copy len)
where:

domain: entry _id input
is the domain to be salvaged. “Modify” access to the domain is required.

options: dir check options input
is a structure containing the various options available. It is described as follows:

type dir check options = packed record
delete connection failures: boolean;
rebuild: boolean;
check vtoce: boolean;
copy: boolean;

end;

where:

dir _check options.delete connection_failures
This is set if the salvager should read the VTOC entries for each branch in the domain
and delete the entries from the domain if the VTOCE does not match the domain entry.

dir_check _options.rebnild
This is set if the domain should be reconstructed even if there are no errors. Normally,
the domain will be rebuilt only if a severe error is found. This option allows reclamation
of wasted space in the domain area and computation of more suitable hash table sizes.

dir_check options.check vtoce
If this is set, VTOCE's for all branches are read, and errors are reported if the VTOCE
attributes do not match those in the entry. Connection failures are not deleted. If
delete connection failures is on, this option is redundant.

dir_check _options.copy
If this is set. and if the domain must be rebuilt, a copy of the domain will be made before
the rebuild is done. A non-nil pointer must he supplied in the copy ptr parameter.

copy _ptr: pointer input
This is a pointer to an area where a copy of the domain may be placed before rebuilding it.

copy _len: segment size output

If a copy is made, this is set to the size, in guarterwords, of the damaged domain that was copied
to the area pointed to by copy ptr

severity: dir_severity resnlt
This set to one of the enumerated type dir_severity, which contains the elements info, fix, rebuild,
and failure. INIF'O denotes no problems, but some informational messages may have been placed in
the syserr log. Fix means minor, correctable errors occurred. Rebuild means that either the rebuild

option was specified, or severe errors were detected. Failure means that the salvager was unable to
construct a correct copy

Amber Kernel Specification 120

GATE: priv_delete _

This is used to remove a domain or segment from the storage system if its corresponding entry in a disk volume
table of contents is missing. This removes the directory entry for the specified object only. Unlike delete_entry_,
it will not delete inferiors to a domain. It should only be called when delete_entry_ fails. This is a privileged
operation.

priv_delete_ (domain, id)
where:
domain: entry _id input
Designates the domain containing the entry to be deleted. “Modify” access to the domain is

required.

id: entry _id input
Designates the entry that is to be deleted.

121 Amber Kcrnel Specification
GATE: adopt segment

This creates a directory entry for an existing “orphan” entry in a disk table of contents. It is a privileged
operation.

uid = adopt segment (domain, name, volume, sspart, vtocx, modes)
where:

domain: entry id input

Designates the domain where the adopted segment should be placed. “Modify” access to the domain
is required.

name: object name input

If this is non-blank, it is the name to be given to the adopted segment. If it is blank, then the
segment has no name and must be referenced by id.

volume: unique_id input
Designates the storage system volume containing the orphan entry.

sspart: unique _id input
Designates the storage system partition containig the orphan entry.

vtocx: unsigned integer input
Designates the position in the volume table of contents of the orphan entry.

modes: access mode set mput
If this is non-null, it designates the initial access to be granted to the creating domain.

uid: entry _id result

This is the unique identifier of the adopted entry as »btained from its entry in the volume table of
contents.

Amber Kernel Specification 122

GATE: sweep _partition

This is used to traverse a storage system partition and search for entries in the partition’s table of contents which
are not in the storage system hierarchy. Such entries may optionally be adopted or deleted. A message is placed
in the syserr log for each orphan entry detected. This is a privileged operation.

sveep partition (sspart, domain, adopt, delete)
where:

sspart: partition _id input
designates the storage system partition to be examined.

domain: entry id input
designates a domain into which any orphan entries detected by the sweep will be adopted. If the

adopt parameter is not set, this parameter is ignored. If null, the current domain is used. “Modify”
access to this domain is required.

adopt: boolean input
If this parameter is set, orphan entries will be adopted into the hierarchy.

delete: boolean input
If this parameter is set, orphan entries will be deleted from the partition’s table of contents.

123

GATE: unique id_

This generates and returns a unique identifler.

uid = unique _id ()
where:

uid: unique id result
is the unique value generated.

Amber Kernel Specification

Amoer Kernel Specification 124

GATE: clock _read_

This returns the current reading of the system calendar clock.
time = clock read ()

where:

time: system time result
is assigned the current clock reading.

125 Amber Kernel Specification

GATE: clock set

This sets the value of the system calendar clock. This is a privileged operation.
clock set (now)

where:

now: system_time input
gives the date and time to which the clock is to be set,

Amber Kernel Specification 126

GATE: add _processor

This operations declares that a processor is ready to run tasks. This is a privileged operation.

The dypamic reconfiguration mechanism, including this gate, has not yet been implemented.
add processor (processor no)

where:

processor_no: processor_id input
gives the identifier of the processor to be added to the system configuration.

Exceptional conditions:

syscode.invalid _processor_no
is an error which occurs when a bad processor number is used.

syscode.processor_online

is an error signal which occurs when an attempt is made to add a processor which is already in the
system configuration.

127 Amber Kernel Specification

GATE: delete processor_

This operation causes a processor to be deleted. All tasks operating on the processor are transferred to other
processors if their processor selection set so allows; tasks dedicated to the particular processor are stopped. This
is a privileged operation.

The dynamic reconfiguration mechanism, including this gate, has not yet been implemented.
delete _processor (processor no)
where:

processor _no: processor_id input
gives the identifler of the processor to be removed from the system configuration.

Exceptional conditions:

gyscode.invalid processor_no
is an error which occurs when a bad processor number is used.

syscode.processor_offline

is an error which occurs when an attempt is made to delete a processor which is not currently in the
system configuration.

Amber Kernel Specification 128

GATE: add_memory

This operation declares that a region of physical memory is available to be used by the system. The region
specified may be less than a complete memory unit. This is a privileged operation.

The dynamic reconfiguration mechanism, including this gate, has not yet been implemented.
add_memory_ (address, length)
where:

address: physical_address input
gives the physical starting address of the region of memory to be added.

length: physical_address input
gives the length of the region of memory to be added.

Exceptional conditions:

syscode.invalid memory _length
is an error which is signalled when the length parameter is out of range, i.e. length < 0.

syscode.memory _online

is an error which is signalled when some part of the region specified is already in the system configu-
ration. When this error occurs, no alteration to the configuration occurs.

129 Amber Kernel Specification

GATE: delete _memory _

This operation removes a region of physical memory from use. The region may be less than the size of an
actual memory unit. Any wired pages in this region are transferred to unaffected memory. This is a privileged
operation.

The dynamic reconfiguration mechanism, including this gate, has not yet been implemented.
delete memory (address, length)
where:

address: physical_address input
gives the physical starting address of the region of memory to be deleted.

length: physical address input
gives the length of the region of memory to be deleted.

Exceptional conditions:

syscode.invalid_memory length
is an error which is signalled when the length parameter is out of range, i.e. length < 0.

syscode.memory offline
is an error which is signalled when some part of the region specified is not currently in the system
configuration. When this error occurs, no alteration to the configuration occurs.

Amber Kernel Specification 130

GATE: shutdown _

This is used to shut down the Amber operating system. This gate does not return. It activates a kernel task
which is charged with stopping the traffic controller, cleanly shutting down the file system, and quiescing the
storage system devices. This is a privileged operation.

shutdown ()

131 Amber Kernel Specification

GATE: mount volume _

This is used to mount a storage system volume. This is a privileged operation.
mount volume (volume, drive)

where:

volume: unique _id input
This is the unique identifier of the storage system volume to be mounted.

drive: unique _id input
This is the unique identifier of the physical device (¢.g. disk drive) where the volume should be
mounted.

Exceptional conditions:

syserror.volume _already mounted
The requested volume is already mounted.

syserror.drive in use
There is already a volume mounted on the requested device.

syserror.bad disk header
The volnme on the requested drive is not an Amber storage system volume.

Amber Kernel Specification 132

GATE: dismount volume

This is used to dismount a storage system volume. This is a privileged operation.
dismount volume_ (volume)

where:

volume: unique _id input
This is the unique identifier of the storage system volume to be dismounted.

Exceptional conditions:

syscode.invalid _volume
The requested volume is not mounted,

syscode.volume in use
The volume may not be dismounted because it contains active storage system partitions.

133 Amber Kernel Specification

GATE: mount _partition _

This is used to mount a storage system partition. The volume containing the partition must already be mounted.
This is a privileged operation.

mount partition (partition)
where:

partition: unique_id input
Designates the partition to be mounted.

Exceptioral conditions:

syserror.volume not mounted
No volume containing the requested partition is mounted.

Amber Kernel Specification 134

GATE: dismount partition_

This is used to dismount a storage system partition. This is a privileged operation.
dismount_partition (partition)

where:

partition: unique_id input
Designates the partition to be dismounted.

Exceptional conditions:

syscode.sspart_not_mounted
The requested storage system partition was not mounted.

135 Amber Kernel Specification

GATE: list volumes

This is used to obtain a list of all storage system volumes currently mounted.
list _volumes (volume list, max_ entries)

where:

volume _list: pointer (volume _list) input)
is the address of an area into which the volume list is to be placed. The format is given below.

type volume list = record
version: version_id;
n_volumes: unsigned _integer;
volume: array [1..n_volumes] of record
drive: unique_id;
volume header: disk header;
end;

where:

volume _list.version
gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

volume list.n_volumes
gives the number of entries in the mounted volume list.

volume _list.drive
is the unique identifier of the drive the volume is mounted on.

volume _list.volume _header
is the disk header for the volume.

max _entries: integer input
is the maximum number of volume list entries that may be returned.

Exceptional conditions:

volume list.n_volumes > max _entries

oceurs if there are more mounted volumes than space has been allocated for. As many entries as
possible are filled in.

Amber Kernel Specification 136

GATE: list_partitions _
This is used to obtain a list of all storage system partitions currently mounted.
list _partitions (partition list, max_entries)

where:

partition_list: pointer (partition_list) input)
is the address of an area into which the partition list is to be placed. The format is given below.

type partition _list = record
version: version_id;
n_partitions: unsigned_integer;
partition: array [1..a_partitions] of record
partition header: partition header;
end;

where:

partition _list.version
gives the version of the structure being used. Currently, only one version is supported,
and this field should be set to 1 prior to the call.

partition list.n _partitions
gives the number of entries in the mounted partition list.

partition_list.partition _header
is the disk header for the partition.

max_entries: integer input
is the maximum number of volume list entries that may be returned.

Exceptional conditions:

volume list.n_partitions > max_entries

occurs if there are more mounted partitions than space has been allocated for. As many entries as
possible are filled in.

137 Amber Kernel Specification

GATE: salvage volume_
This is used to salvage a storage system volume’s volume header. This is a privileged operation.
salvage volume (volume, drive_id)
where:
volume: unique _id input
This is the unique identifier of the storage system volume to be salvaged. The volume must not be

mounted.

drive: unique _id input
This is the unique identifier of the physical device (e.g. disk drive) where the volume can be found.

Amber Kerrnel Specification 138

GATE: salvage _partition _
This is used to salvage a storage system partition. This is a privileged operation.
salvage partition (partitionm)
where:
partition: unique_id input

This is the unique identifier of the storage system partition to be salvaged. The partition must not
be mounted.

139 Amber Kernel Specification

GATE: format volume _

This is used to format a volume as an Amber storage system volume. This is a privileged operation.
volume := format volume (drive, name, device, serial_ no, comment, size)

where:

drive: unique id input
designates the physical device where the unformatted volume may be found.

pame: string input
is the name to be assigned to the new volume.

device: string input
is the device name to be assigned to the new volume.

serial no; string input
is the serial number to be assigned to the new volume.

comment: string input
i3 a comment string to be associated with the new volume.

size: unsigned integer input
is the size of the new volume in quarterwords. This includes the space taken up by the volume
header.

volume: unique id output
is the unique identifier assigned to the new volume.

Exceptional conditions:

syscode.volume in_use
The volume mounted on the specified drive is in use.

Amber Kernel Specification 140

GATE: format partition _
This is used to format a partition as an Amber storage system partition. This is a privileged operation.

partition := format partition (voclume, name, comment, start, length, vtoc_size, vent_size,
second class, connect chacking)

where:

volume: unique _id input
designates the volume where the partition should be formatted. The volume must be mounted.

name: string input
is the name to be assigned to the new partition.

comment: string input
is a comment string to be associated with the new partition.

start: unsigned integer input
is the starting address of the partition within the volume. The address is specified in quarterwords.

length: unsigned integer input
is the size of the partition in quarterwords. This includes the header, VTOC, and VSMT.

vtoc _size: unsigned _integer input
is the number of entries to be allocated in the volume table of contents. (VTOC)

vsmt size: unsigned_integer input
is the number of entries to be allocated in the volume segment map table. (VSMT)

second class: boolean input
If set, this designates this partition as a second-class partition.

connect _checking: boolean input

If set, this specifies that record connect checking is to be performed on this partition. This increases
storage system reliability at the expense of disk space

partition: unique id output
is the unique identifier assigned to the new partition.

Exceptional conditions:

syscode.invalid _volume
The specified volume is not mounted.

141 Amber Kernel Specification

GATE: delete partition _

This is used to delete a storage system partition from a storage system volume. The partition must not be
moounted, but its containing volume must be. This is a privileged operation.

delete partition_ (partition)
where:

partition: unique id input
designates the partition to be deleted.

Exceptiona) conditions:

gyserror.volume_not_mounted
No volume containing the specified partition is mounted.

Amber Kernel Specification 142

GATE: read_vtoce _

This is used to read an entry from the volume table of contents. This is a privileged operation.
read vtoce (partition, vtocx, vtoce)

where:

partition: unique_id input
is the unique identifier of the storage system partition containing the VTOCE to be read.

vtocx: unsigned _integer input
is the index of the desired entry in the volume table of contents.

vtoce: vtoce reference output
The flelds of this structure are filled in with the contents of the requested volume table of contents
entry. See ADN-?? for a description of the VTOCE structure.

Exceptional conditions:

syscode.sspart_not _mounted
The requested storage system partition is not mounted.

143 Amber Kernel Specification

GATE: read _vsmte _

This is used to read an entry from the volume segment map table. This is a privileged operation.
read vsmte (partition, vemtx, vemte)

where:

partition: unique _id input
is the unique identifier of the storage system partition containing the VSMTE to be read.

vsmtx: unsigned _integer input
is the index of the desired entry in the volume segment map table.

vsmte: vsmte reference output
The fields of this structure are filled in with the contents of the requested volume segment map
table entry. See ADN-?7 for a description of the VSMTE structure.

Exceptional conditions:

syscode.sspart_not _mounted
The requested storage system partition is not mounted.

Amber Kernel Specification 144

GATE: delete_vtoce

This is used to delete an entry from the volume table of contents. This operation only deletes the vtoce; the
partition salvager must be invoked to delete any vsmtes and disk records owned by this vtoce. This is a privileged

operation.
delete vtoce (partition, vtocx)

where:

partition: unique_id input
is the unique identifier of the storage system partition containing the VTOCE to be deleted.

vtocx: unsigned _integer input
is the index of the desired entry in the volume table of contents.

145 Amber Kernel Specification
GATE: get kernel_address_

This is used to obtain the address within the kernel address space of any non-filesystem segment mapped in the
kernel address space. This is a debugging tool and its use is a privileged operation.

address := get kernel address_ (name)
where:

pame: string input
is the 8 character name of the kernel segment.

address: pointer output
is the address within the kernel address space where the specified segment is mapped. If the
segment is not mapped, nil is returned. This pointer is intended to be passed as a parameter to
the copy out_ gate and should not be referenced through.

Amber Kernel Specification 146

GATE: copy out _

This is used to copy data from the kernel address space into a user’s address space. This is used for debugging
and is a privileged operation.

copy_out_ (kernel address, nser address, length)
where:

kernel address: pointer input
is a pointer to the data in the kernel which is to be copied into the caller’s address space.

user address: pointer input
is a pointer to an area where the kernel data should be placed.

length: segment size input
is the length, in quarterwords, of the area to be copied.

147 Amber Kernel Specification

GATE: copy syserr_log

This is used to copy out the system error log from the kernel buffer into the file system. This must be done
periodically because the kernel paged syserr log is of a fixed size. This is a privileged operation.

copy_syserr_log (log buffer, legnth)
where:

log buffer: string reference output
is a buffer where the paged syserr log should be placed.

length: unsigned _integer output
is the length, in quarter-words, of the log which was placed in log buffer.

Amber Kernel Specification 148

Common Exceptions

There are a number of error conditions which are detected by many kernel operations. For example, errors
resulting from incorrect access or invalid names. These common errors have been omitted from the specification
of each interface; only those which are peculiar to a particular operation, or of special significance to the operation
are given in specification.

The following is a list of the error codes commonly returned by the kernel operations. This codes are passed to
the user as a parameter to the error exception.

syscode.entry not found
An entry (object or link) having the specified id cannot be found.

syscode.not_a_domain
The operation requires a domain object.

syscode.not_a_segment
The operation requires a segment object.

syscode.not _a task
The operation requires a task object.

syscode.not _a channel
The operation requires a message channel object.

syscode.object no_get _access
“Get” access to an object is not allowed.

syscode.object no put_access
“Put" access to an object i3 not allowed.

syscode.object _no listen _access
“Listen” access to an object is not allowed.

syscode.object no broadcast _access
“Broadcast™ access to an object is not allowed.

syscode.domain no find access
“Find” access to a domain is not allowed.

syscode.domain _no list _access
“List” access to a domain i3 not allowed.

syscode.domain no modify _access

“Modify” access to a domain is not allowed. Modify access is required to create objects and to change
their names, access control lists or attributes.

syscode.domain no use_access
“Use” access to a domain is not allowed.

syscode.domain_no_invoke_access
“Invoke” access to a domain is not allowed.

syscode.seg_no_read _access
“Read” access to a segment is not allowed.

syscode.seg_no write_access
“Write” access to a segment is not allowed.

syscode.task no_status_access
“Task” access to a task is not allowed.

149

Amber Kernel Specification

syscode.task _no_writestate access
“Writestate™ access to a task is not allowed.

syscode.task_no_control access
“Control” access to a task is not allowed.

syscode.channel no_transmit access
“Transmit” to a message channel is not allowed.

syscode.domain _full

A domain cannot be modified because space cannot be allocated in the domain for some internal kernel
structure.

syscode.invalid_volume
The volume specified in the creation of a segment or domain is not currently mounted on the system.

syscode.incorrect _volume

The volume specifled in the creation of a segment or domain was not the same as the second class
volume on which the containing domain resides.

syscode.insufficient _quota
A segment or domain cannot be created because a quota limit has been exceeded. The limit may be

for either the volume holding the containing domain or the volume on which the object is to be placed.
Contrast this with syscode.no_quota

syscode.no_quota
A segment or domain cannot be created because there is no quota account for the volume within the
containing domain or one of its parents. This occurs when use of the volume has not be authorized.

syscode.bad object _name

An object name is too long or contains invalid characters. Object names must be 48 characters or less
and use only the 95 character printing ASCII set.

syscode.bad property name
A property name is too long or contains invalid characters.

syscode.name_duplication

An entry cannot be created because the name to be given to it conflicts with that of an existing entry.
When the name is given as all blanks, then the object will have no name and this error cannot oceur.

syscode.object _not _created
A object cannot be created for some reason. This is a catch-all code.

syscode.invalid _version
The version specified for a structure is not a current version.

syscode.invalid _access _path

A link’s access path is invalid. The error when (1) a path id refers to an object rather than a link, (2)
if the first component of the path cannot be legally used by the domain creating or holding the link.

syscode.not_an_object

The operation applies only to object entries, not to link entries as well. For example, the set_acl_
operation is applicable only to objects.

syscode.object _not_addressible
A mapping operation can be applied only to segment entries (including links to segments.

syscode.task _inactive
The operation (start, suspend, etc.) applies only to active tasks.

syscode.invalid wakeup _id

Amber Kernel Specification 150

A wakeup index is null or exceeds the maximum allowed by the installation.

syscode.user/server_node _deleted
A message channel operation cannot be performed because one node of the channel has been deleted.

syscode.channel _disconnected
A message channel operation cannot be performed because the current task does not have a connection.
Either the task does not have control of the channel, or no connection exists on the channel.

Gate Index
create_domain _ .

set _domain owner
move object .
lookup _

list entries .
list _entries_status _
list entries by name_ .
link _info

get pathname
list_names

set _names

delete _entry

create link ..
create link from _acl_
list _ac]

set _acl

seal_ohject _

unseal object
validate access_
create segment
truncate segment
set_max length
create special segment
map _segment
gsegment address .
segment entry = .
unmap_segment
list_mapped segments
wire)

unwire
prepage _storage
postpurge storage
update storage
deactivate

move data

invoke domain
create _task

get _task meters

get _task state |

19
20
21
22
23
24
26
28
30
32
33
34
35
36
37
38
39
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
63
64
65

set _task state L . L L o e e e s e e e e s e e s, B8
get_task _scheduling parameters e 1 {
set_task scheduling_parameters_ . . . e e e O 1
activate task L L s e e s s, 89
deactivate tasko oo L. P (V)
suspend _task L L. L L0 L ey
start task_ e 4
kil tasko e
mounitor _task L ... o B £ !
wakeup_ L L L oL Lo e 1
set wakeup mask_ e T i {
declare_broadcast _event_ oL S £ -
broadeast R 4
delete_broadcast event {1
set alarm_ L . -3 |
get ¢pu alarm Lo L L - '/
set_trap_bandlers. oL O - &
get trap _handlers. oL L0 Lo 8
add terminal00 R - 111

attach terminal O -
detach terminal L. . Y |
order_terminal Co e e 88
terminal read e R - 1
terminal _read char_ e O ¢ 1]
terminal input_available L. . *] |
terminal_write G Do R ¢ ¥ 5
create channel e e e . R ¢ &
connect L. L. .. . o O
disconnect L. . e 1Y
identify caller Co e T
send L L Lo e I ¥
receive L. L. O * |-
receive_packet info_ P * 1)
flush chapnel oL S R £0,0)
create dummy object L . (1]]
set switech00 0L S S 10 Y/
object status oL L. L L O (K
put property00 S . (11
get property G e e e . . U]

put _property test _
delete_property _

delete _property test_

test _property
list _properties .
set _default volume _

set_default volume_domains
create_quota account _
delete _quota_account _

set _quota_limit
list_quota .
salvage domain _
priv_delete _
adopt _segment _
sweep partition
unique _id

clock _read

clock _set

add _processor _ .
delete processor . .

add_memory
delete_memory
shutdown

mount _volume _
dismount volume _

mount _partition . . .
dismount _partition _ .

list_volumes

list _partitions
salvage volume
salvage partition _
format _volume _

format partition . .

delete partition
read vtoce

read vsmte

delete vtoce .
get kernel address
copy out

copy syserr log

. 107
. 108
. 109
. . 110
. 111
. 112
. 113
. . 114
.. 118
. 116
. 117
. . 119
. 120
.o 121
.. 122
. 123
. 124
.. 125
. 126
. 127

.. 128
.. 129
. 130
N 3 |
.. 132
. . 133
. 134
. . 135
. 136
.. 137
. 138
.. 139
.. 140
. 141
. 142
. 143
. 144
. 145
. 146
. 147

